

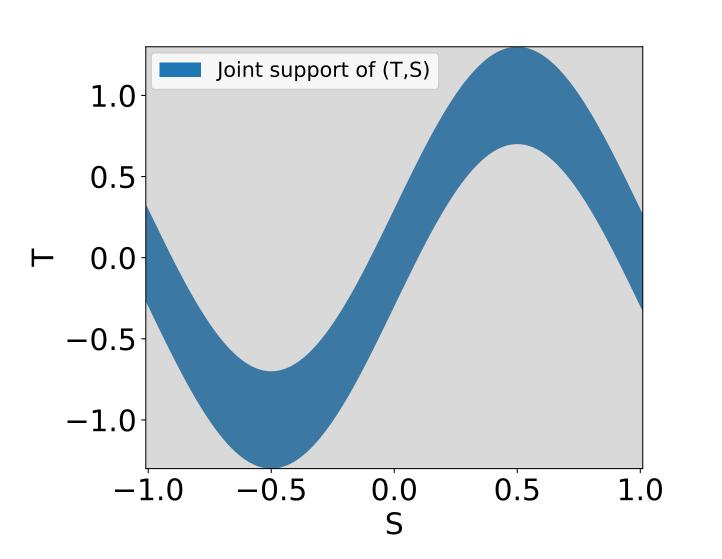
NONPARAMETRIC INFERENCE ON DOSE-RESPONSE CURVES WITHOUT THE POSITIVITY CONDITION

INTRODUCTION

Estimating the causal effects for continuous treatments (*i.e.*, the dose-response curves) often relies on the **positivity condition**:

Every subject has some chance of receiving any treatment level T = t regardless of its covariates $oldsymbol{S} = oldsymbol{s} \in \mathbb{R}^d.$

• This condition **could fail** in observational studies with continuous treatments.



- We propose a novel integral estimator of the dose-response curve without assuming the positivity condition.
 - 1. It is based on a localized derivative estimator and the fundamental theorem of calculus.
 - 2. It can be efficiently computed in practice via Riemann sum approximations.
 - 3. It can be combined with bootstrap methods for valid inference on the dose-response curve and its derivative.

IDENTIFICATION CONDITIONS

Assume that $\{(Y_i, T_i, S_i)\}_{i=1}^n$ are IID from the model:

 $Y = \mu(T, \mathbf{S}) + \epsilon$ and $T = f(\mathbf{S}) + E$,

where $E \perp\!\!\!\perp S, \epsilon, \epsilon \perp\!\!\!\perp S, \mathbb{E}(E) = \mathbb{E}(\epsilon) = 0, \mathbb{E}(E^2) > 0,$ and $\mathbb{E}(\epsilon^4) < \infty$.

Dose-response curve and its derivative function can be identified with observed data as:

$$m(t) = \mathbb{E}\left[\mu(t, \mathbf{S})\right]$$
 and $\theta(t) = m'(t) = \frac{d}{dt}\mathbb{E}\left[\mu(t, \mathbf{S})\right]$

under *consistency* and *ignorability* assumptions.

Interchangability Assumption: The function $\mu(t, s)$ is continuously differentiable with respect to t and

$$\mathbb{E}\left[\mu(T, \boldsymbol{S})\right] = \mathbb{E}\left[m(T)\right],\\ \theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, \boldsymbol{S})\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, \boldsymbol{S})\Big|T = t\right].$$

MOTIVATING EXAMPLE

Consider the following additive confounding model:

$$Y =$$

with $\mathbb{E}[\eta(S)] = 0$. This model satisfies our interchangability assumption and is known as the geoadditive structural equation in spatial statistics.

THREE KEY INSIGHTS

m(t)

PROPOSED ESTIMATORS

 $\widehat{m}_{\theta}(T_{(j)})$

• Evaluate $\widehat{m}_{\theta}(t)$ at any $t \in [T_{(j)}, T_{(j+1)}]$ by a linear interpolation between $\widehat{m}_{\theta}(T_{(j)})$ and $\widehat{m}_{\theta}(T_{(j+1)})$.

Yikun Zhang[†], Yen-Chi Chen, and Alexander Giessing Department of Statistics, University of Washington yikun@uw.edu

 $= m(T) + \eta(S) + \epsilon$ and T = f(S) + E

1. $\mu(t, s)$ and $\frac{\partial}{\partial t}\mu(t, s)$ can be consistently estimated at each observation (T_i, S_i) .

2. $\theta(t)$ can be consistently estimated by the localized form $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S) \middle| T = t\right].$

3. By the fundamental theorem of calculus,

$$= m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} m'(\widetilde{t}) d\widetilde{t} = m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta(\widetilde{t}) d\widetilde{t}.$$

 \Rightarrow Taking the expectation on both sides yield that

$$h(t) = \mathbb{E}\left[\mu(T, S)\right] + \mathbb{E}\left[\int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_C(\widetilde{t}) \, d\widetilde{t}\right]$$
$$= \mathbb{E}(Y) + \mathbb{E}\left[\int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_C(\widetilde{t}) \, d\widetilde{t}\right].$$

Proposed Integral Estimator of m(t):

$$\hat{h}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\tilde{t}=T_i}^{\tilde{t}=t} \widehat{\theta}_C(\tilde{t}) d\tilde{t} \right],$$

where $\hat{\theta}_C(t)$ is a consistent estimator of $\theta_C(t) =$ $\int \beta_2(t, s) dP(s|t)$ with $\beta_2(t, s) \equiv \frac{\partial}{\partial t} \mu(t, s)$.

• Fit $\beta_2(t, s)$ by local polynomial regression; Estimate P(s|t) by Nadaraya-Watson conditional CDF estimator.

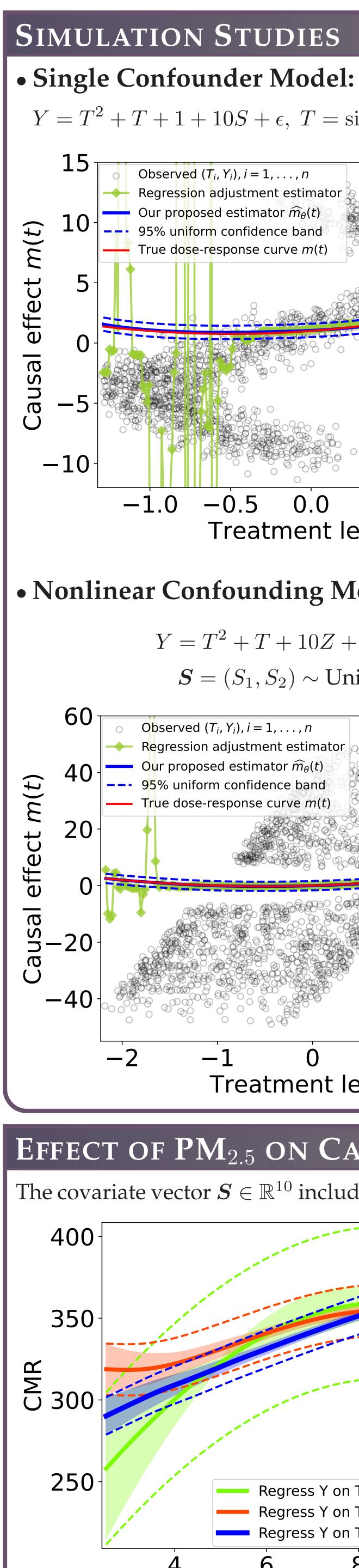
Proposed Localized Estimator of $\theta(t)$ **:**

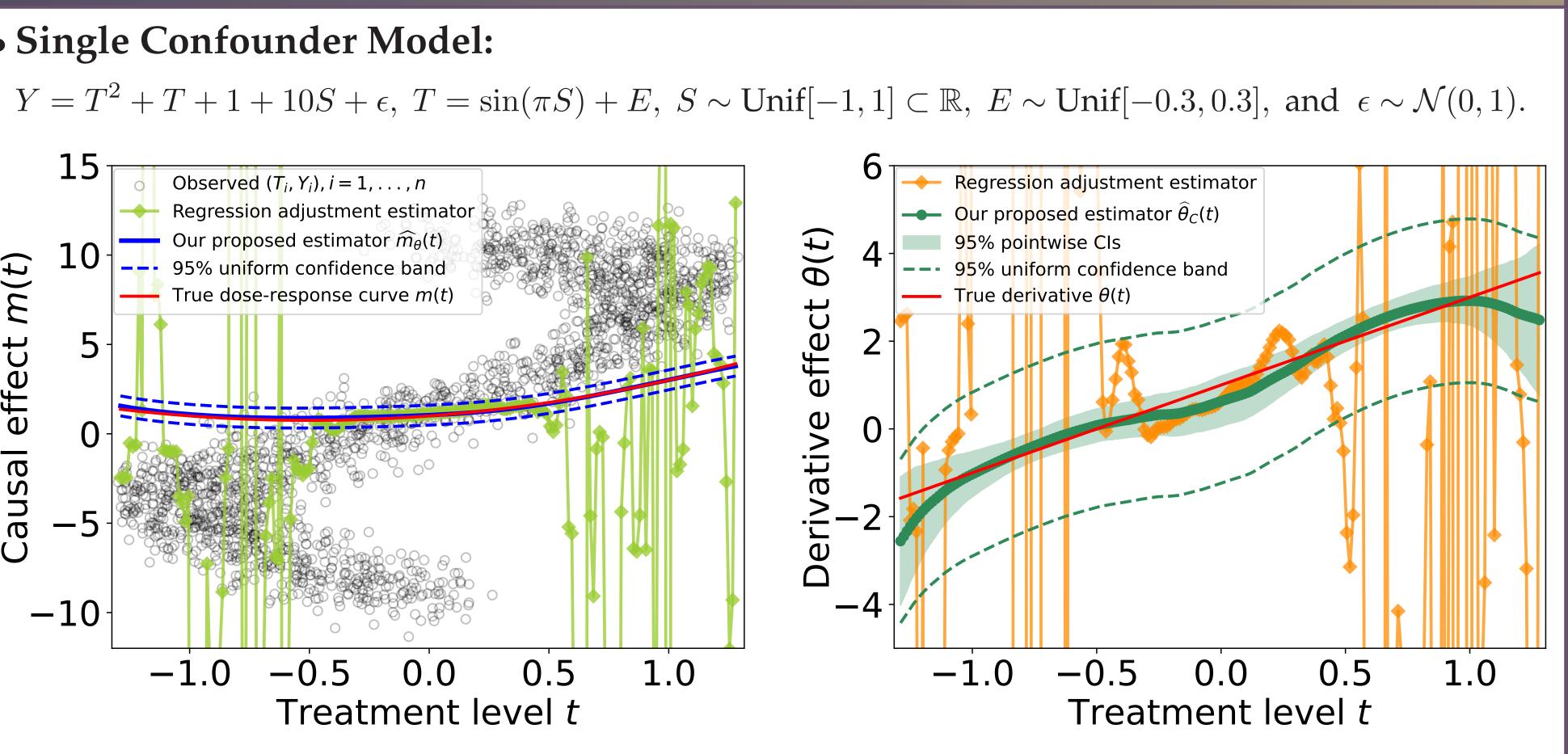
$$\widehat{\theta}_C(t) = \frac{\sum_{i=1}^n \widehat{\beta}_2(t, \mathbf{S}_i) \cdot \bar{K}_T\left(\frac{T_i - t}{\hbar}\right)}{\sum_{j=1}^n \bar{K}_T\left(\frac{T_j - t}{\hbar}\right)}.$$

FAST COMPUTING ALGORITHM

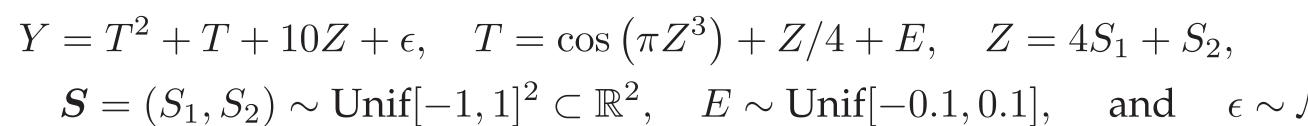
Let $T_{(1)} \leq \cdots \leq T_{(n)}$ be the order statistics of $T_1, ..., T_n \text{ and } \Delta_j = T_{(j+1)} - T_{(j)} \text{ for } j = 1, ..., n-1.$ • Approximate $\widehat{m}_{\theta}(T_{(j)})$ for j = 1, ..., n as:

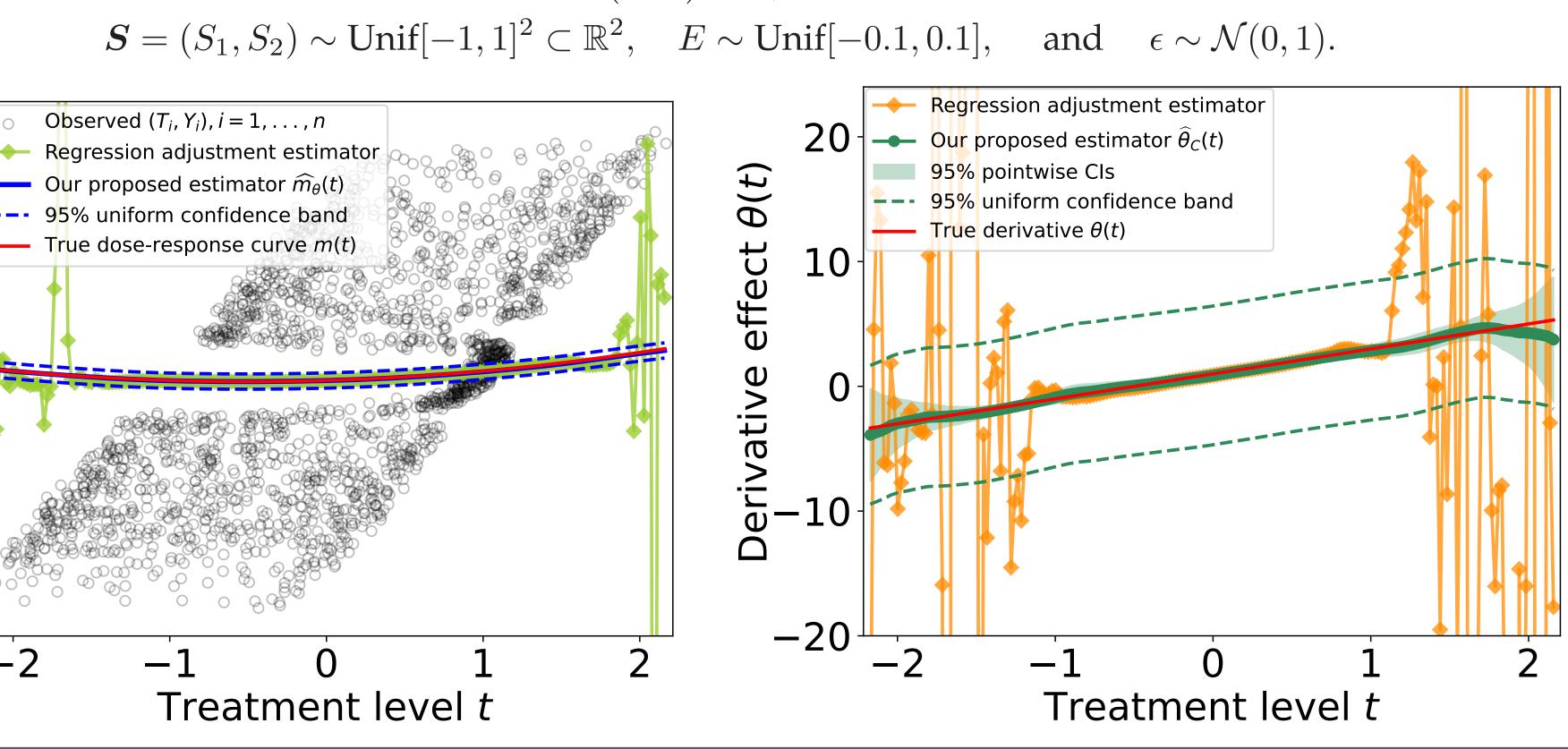
$$_{j)}) \approx \frac{1}{n} \sum_{i=1}^{n} Y_{i} + \frac{1}{n} \sum_{i=1}^{n-1} \Delta_{i} \Big[i \cdot \widehat{\theta}_{C}(T_{(i)}) \mathbb{1}_{\{i < j\}} \\ - (n-i) \cdot \widehat{\theta}_{C}(T_{(i+1)}) \mathbb{1}_{\{i \ge j\}} \Big]$$





• Nonlinear Confounding Model:





EFFECT OF $PM_{2.5}$ on Cardiovascular Mortality Rate (CMR)

