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Abstract

Structure learning is a fundamental and challenging issue
in dealing with Bayesian networks. In this paper we intro-
duce a two-step clustering-based strategy, which can auto-
matically generate prior information from data in order to fur-
ther improve the accuracy and time efficiency of state-of-the-
art algorithms in Bayesian network structure learning. Our
clustering-based strategy is composed of two steps. In the
first step, we divide the potential nodes into several groups
via clustering analysis and apply Bayesian network structure
learning to obtain some pre-existing arcs within each clus-
ter. In the second step, with all the within-cluster arcs being
well preserved, we learn the between-cluster structure of the
given network. Experimental results on benchmark data sets
show that a wide range of structure learning algorithms ben-
efit from the proposed clustering-based strategy in terms of
both accuracy and efficiency.

Introduction
Bayesian network models, first introduced into artificial in-
telligence by Pearl (1982), have been applied to miscella-
neous fields of science. For example, Bayesian network clas-
sifiers, carried out by Friedman, Geiger, and Goldszmidt
(1997), improved the performances of Naive Bayes clas-
sifiers under some circumstances by taking into account
the correlations between variables. During applications of
Bayesian networks under real-world scenarios, practition-
ers will inevitably face an annoying problem about how to
“precisely” learn the structures of Bayesian networks from
data. To address this problem, some constraint-based and
score-based algorithms have been proposed in the last two
decades (Margaritis (2003)). Chickering (1996) proved that
this problem is NP-hard and the existing structure learning
algorithms might produce some network structures that can
hardly describe the original data sets. However, some pri-
or information helps to ameliorate computational costs and
accuracies of the existing algorithms. For instance, Perrier,
Imoto, and Miyano (2008) assumed the skeleton of a net-
work and efficiently found an optimal Bayesian network by
restricting the searching on it. Some algorithms require the
prior knowledge in high quality, and they need users to spec-
ify a structure or an ordering of nodes, both of which are
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not easy to achieve (Xu et al. (2015)). Moreover, in real-
world applications, Bayesian network structures could be
learnt without any source of expert knowledge. Hence an au-
tomatic mechanism for generating prior information should
be of great merit. The previous work tends to incorporate
prior knowledge to elicit informative prior probability distri-
butions of the graph structures (Cano, Masegosa, and Moral
(2011)). However, the approach of existing work is highly
constrained to the availability and correctness of prior in-
formation. This conspicuous drawback motivates us to de-
velop a novel automatic way to generate prior information
from data by the structure learning algorithm itself. The pri-
or knowledge may come from the existence and absence of
parents, and distribution knowledge including the condition-
al probability distribution (CPD) of edges and the proba-
bility distribution (PD) of nodes (Xu et al. (2015)). Among
various kinds of prior knowledge, nothing goes better than
some pre-existing arcs, since they work as the foundation of
a network structure. Friedman, Nachman, and Peér (1999)
applied clustering to figure out the candidate parents of a
variable in a Bayesian network, which was considered as an
innovative way to generate prior information from data it-
self via clustering. Moreover, Kojima et al. (2010) divided
the super-structure (a pre-assumed skeleton for the resulted
network) into several clusters in order to extend the feasi-
bility of their constrained optimal searching methods. Their
ideas inspire us to resort to clustering analysis in order to
automatically obtain some prior information about the ex-
istence of arcs. Our two-step clustering-based strategy uti-
lizes clustering analysis in the first step. We first apply clus-
tering to group those strongly “dependent” nodes (or vari-
ables) and learn the arcs within clusters via a conventional
structure learning algorithms. In the next step, retaining all
the arcs within clusters, we again implement the same tradi-
tional algorithm so as to learn the arcs between clusters. The
advantages of our two-step clustering-based strategy fall in-
to two aspects. First, it can tackle those real-world struc-
ture learning problems when expert knowledge is scarce or
even nowhere to obtain. Second, a wide range of traditional
structure learning algorithms can benefit from our strategy
in terms of accuracy and time efficiency. The brief version
of our method has been accepted by AAAI-18 Student Ab-
stract and Poster Program (Zhang, Liu, and Liu (2018)).



Background
In this section we present some related background knowl-
edge. We begin with a description of general notations that
would be used in following sections. Consider a finite set
U = X1, ..., XN of discrete random variables where each
variable Xi may take on values from a finite set. We use
capital letters such as X,Y, Z for variable names and lower-
case letters such as xi, yi, zi to denote specific values taken
by those variables. The notation X ⊥ Y |S indicates that X
and Y are independent upon conditioning on (at least one
value assignment of) the variables in the set S.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution over a set
of random variables U. Formally, a Bayesian network for U
is a pair B = 〈G,Θ〉. The first component, G, is a direct-
ed acyclic graph whose vertices correspond to the random
variables X1, ..., XN , and whose edges represent direct de-
pendencies between the variables. The second component
of the pair, namely Θ, represents the set of parameters that
quantifies the network. See Friedman et.al (1997) for detail-
s. Together, they sufficiently decompose the joint probability
distribution over U into

Pr(X1, X2, ..., XN ) =

N∏
i=1

Pr(Xi|Pa(Xi)),

where Pa(Xi) is the set containing the parents of Xi in
the Bayesian network.

As a paramount step in learning a Bayesian network,
learning its structure aims at identifying a network B that
uncovers a set of conditional independence relations among
the variables given the data set D. Besides independencies,
under some assumptions, the graph structure of a Bayesian
network can also be used in certain domains to represen-
t cause-effect relationships through the edges and their di-
rections (Margaritis (2003)). In this paper we focus primar-
ily on two types of structure learning algorithms, namely,
constraint-based and score-based methods. Later analyses
and experimental results indicate that both these two type-
s of methods benefit from our innovative strategy in terms of
accuracy and time efficiency.

Constraint-based Structure Learning
The foundation of constraint-based structure learning algo-
rithms is the profound work of Verma and Pearl (1991), the
inductive causation (IC) algorithm. They learn the network
structure by analyzing the probabilistic relations entailed by
the Markov property of Bayesian networks with condition-
al independence tests and then constructing a graph which
satisfies the corresponding d-separation statements (Scutari
(2010)).

Classical constraint-based algorithms cannot be applied
to any real-world problem due to the exponential number of
possible conditional independence relationships (Nagarajan,
Scutari, and Lébre (2013)). As a result, Margaritis (2003)
proposed a novel approach, grow-shrink (GS) algorithm.
The plain version of the GS algorithm utilized Markov blan-
ket information for inducing the structure of a Bayesian net-

work and employed dependence tests conditioned only on
the minimal Markov blankets of the variables (or nodes) in-
volved. The definition of a minimal Markov blanket is as
follows,

Definition (Markov blanket): For any variable X ∈ U,
the minimal Markov blanket BL(X) ⊆ U is the minimal
subset of variables such that for any Y ∈ U−BL(X)−X ,
X ⊥ Y |BL(X).

In a Bayesian network, the (minimal) Markov blanket of a
node X consists of all its parents, children, and all the other
nodes sharing a child with X .

Besides the popular GS algorithm, some other constraint-
based algorithms are worth being mentioned here. The In-
cremental Association Markov Blanket (IAMB) algorithm
uses a two-phase selection scheme based on a forward se-
lection followed by a backward one to detect the Markov
blankets (Tsamardinos et al. (2003)). The Interleaved Incre-
mental Association (inter-IAMB) algorithm is a variant of
IAMB that interleaves the grow phase with the shrink phase
to reduce the size of Markov blankets in time (Yaramakala
and Margaritis (2005)). The Max-Min Parents and Children
(MMPC) is the first local-learning algorithm for identify-
ing the parents and children of any intended variables in a
Bayesian network that faithfully represents the joint distri-
bution of data (Tsamardinos, Aliferis, and Statnikov (2003)).

The biggest disadvantage of constraint-based algorithm-
s is their inherent sensitivity to the failures of condition-
al independence tests. Although some preceding algorithms
like the GS algorithm may improve the robustness of their
predecessors by incorporating random factors, their perfor-
mances are still outweighed by some primitive algorithms
with the assistance of prior information. Therefore, one can
imagine that the robustness of statistical tests will be further
improved if we also furnish them some prior information.

Score-based Structure Learning
Another category of structure learning algorithms treats the
problem as an optimization problem, by assigning a statis-
tically motivated score to each candidate Bayesian network
(Friedman, Nachman, and Peér (1999)). Given the data set
D, the score of a possible structure is

Score(G,D) = Pr(G|D) =
Pr(D|G)Pr(G)

Pr(D)
(1)

The most common score function is the Bayesian Infor-
mation Criterion (BIC). Given the data set D = x1, ...,xN ,
the BIC score function of a network B is

BIC(B|D) = LL(B|D)− 1

2
|B|log(N), (2)

where |B| is the number of parameters in the network. The
first term represents the log likelihood of B given D:

LL(B|D) =

N∑
i=1

log(PB(xi)) (3)

The log likelihood has a statistical interpretation: the higher
the log likelihood, the closer B is modeling the probabili-
ty distribution in the data D (Friedman, Geiger, and Gold-
szmidt (1997)).



Another popular score function is called minimal descrip-
tion length (MDL) score, which is simply the negate of the
BIC score function.

With a preassigned score to each candidate network,
score-based algorithms search over the space of all possi-
ble structures and return the optimal one. A direct searching,
however, could cause an intractable problem when the num-
ber of variables is large. The reason lies in the fact that the
potential space of network structures is at least exponential
in the number of variables n: there are n(n− 1) possible di-
rected edges and thus 2n(n−1) possible structures for every
subset of these edges. Any exhaustive searching approach
for all possible structures is unwise, and instead heuristic
methods are employed in practice. One obvious choice is the
hill-climbing algorithm, whose idea is to generate a model
in a step-by-step fashion by making the maximum possible
improvement in an objective quality function at each step
(Khanteymoori, Homayounpour, and Menhaj (2009)). Oth-
er meritorious search methods like stochastic hill-climbing,
Tabu greedy search (TABU), and genetic algorithms (Lar-
rañaga et al. (1997)) are also commonly used.

Score-based structure learning algorithms may get stuck
in a local maximum when the initial condition of search-
ing is not properly set. Hence if an initial structure with
some pre-existing arcs is known in advance, the probabil-
ity of score-based algorithms to settle down on the global
maximum will increase.

Clustering Analysis
In the literature, clustering analysis aims at grouping or seg-
menting a collection of objects into subsets or “clusters”,
such that those within each cluster are more closely relat-
ed to one another than objects assigned to different clusters
(Hastie, Tibshirani, and Friedman (2009)). Clustering anal-
ysis can be done horizontally or vertically on a data set of n
independent measurements and N variables. More precise-
ly, we can either segment measurements or group variables
into clusters. In this paper we concentrated on partitioning
the N variables into K distinct groups, where the number
K is a tuning parameter.

Central to clustering analysis is the choice of a measure
of the dissimilarity (or distance) between different items.
A clustering method attempts to group the items based on
the definition of dissimilarity supplied to it (Hastie, Tibshi-
rani, and Friedman (2009)). In this paper a refined version
of 1-correlation will be introduced and implemented in or-
der to obtain some prior information about the dependencies
between variables. In addition, to match up with the test s-
tatistics in constraint-based algorithms, a negative version of
Mutual Information will also be used on data sets with pure-
ly discrete variables. In the next section, we also discuss how
we are going to select a clustering method for our two-step
clustering-based strategy.

Method
In this section we will outline the framework of our strategy
and discuss some involved details of our setting. As we men-
tion earlier, prior information helps to improve the accuracy

and reduce computational costs in Bayesian network struc-
ture learning. Thus our two-step clustering-based (TSCB)
strategy, which automatically generates some pre-existing
arcs from data, can be applied to any structure learning al-
gorithm. To obtain more accurate arcs and minimize com-
putational costs in the first step, we group the variables with
a strong “dependency” via clustering analysis. Within each
cluster, a traditional structure learning algorithm is conduct-
ed to learn the arcs, which work as the prior information for
the second step structure learning. To combine clusters, we
implement the same traditional algorithm with all the arcs
in the first step being well-preserved. See Algorithm 1 for
details.

Algorithm 1 Two-step Clustering-based Bayesian Network
Structure Learning Strategy
Input:
• Data set D = X1, X2, ..., XN with N variables
• The number of clusters: K (Parameter)
Step 1:

1: Compute the dissimilarity matrix.
2: Carry out clustering analysis via average linkage ag-

glomerative clustering method and cut the dendrogram
into K groups (clusters).

3: Learn Bayesian network structures within each cluster
using a traditional algorithm A1.

Step 2:
1: Apply the algorithm A again on all variables with the

retained arcs to combine clusters.
Output: Bayesian network structure learned from the data
set D.

Dissimilarity Metric
When the outline of our TSCB strategy is clear there are
still some details that we need to scrutinize. The computa-
tion of the dissimilarity matrix works as the foundation of
clustering analysis. More precisely, the way that we define
the distance metric between variables plays a central role in
the outcome of clustering. Real-world data sets may con-
tain variables with purely discrete attributes or continuous
attributes. Nevertheless, some hybrid data sets that are the
mixture of continuous and discrete variables also exist in bi-
ological and medical fields. Thus we must employ different
dissimilarity metrics for each type of data sets, which are
suitable to measure the dependencies between variables.

Cover and Thomas (2006) suggested that the strength of
dependencies between variables can be measured using mu-
tual information or correlation. However, the selection be-
tween these two candidate metrics is subtle. One must recall
that constraint-based algorithms rely heavily on conditional
independence tests. Commonly, the test statistics is the mu-
tual information for categorical variables while the linear

1This could be any traditional structure learning algorithm, like
the grow-shrink algorithm.



correlation for continuous variables. As a result, the princi-
ple of choosing the dissimilarity metric is to match up with
the test statistics in that we can maximize the prior infor-
mation obtained from data in the first step and reduce com-
putational costs in the second step. For data sets with purely
discrete variables, we use the negative mutual information to
define the dissimilarity metric Dis(X;Y ) between the vari-
able X and Y ,

Dis(X;Y ) = −
∑
xi,yi

P̂ (xi, yi)log
P̂ (xi, yi)

P̂ (xi)P̂ (yi)
(4)

In practice, such mutual information is computed according
to the estimated entropy of the empirical probability distri-
bution.

As for data sets with purely continuous variables, the
common 1-correlation dissimilarity is used.

Dis(X;Y ) = 1−

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

, (5)

where x̄ = 1
n

∑n
i=1 xi is the sample mean of X, and analo-

gously for ȳ.
The situations become more complicated when it comes

to hybrid data sets. If we still want to apply the usual Pearson
correlation to define the dissimilarity metric, we have to in-
troduce a technique to transform the variables with discrete
attributes.

1. Converting: Label attributes of discrete (or categorical)
variables by nonnegative integers

2. Centralization: Shift the variables such that their at-
tributes are central at 0

Table 1 illustrates how a discrete (or categorical) variable
with three levels is converted and centralization into its nu-
meric representation.

Variable Converting Centralization
Attribute 1 0 -1
Attribute 2 1 0
Attribute 3 2 1

Table 1: An Example of Transforming a Discrete Variable

On the other hand, continuous variables can be discretized
by quantile or Harteminks pairwise mutual information.
Then the preceding argument can be applied to hybrid da-
ta sets.

Clustering Method
Besides the choice of a suitable dissimilarity metric, an
adoption of clustering methods may, in some extents, af-
fect the effectiveness of clustering analysis. There are ba-
sically two categories of clustering methods, partitioning
and hierarchical. The representative of partitioning meth-
ods is K-means (MacQueen (1967)) The results of apply-
ing K-means or K-medoids clustering algorithms depend on

the choice for the number of clusters to be searched and
a starting configuration assignment (Hastie, Tibshirani, and
Friedman (2009)). Consequently, this type of clustering al-
gorithms is not robust enough to be applied in our TSCB
strategy, especially when the performances of constraint-
based algorithms are sensitive to the results of condition-
al independence tests. As for hierarchical clustering, it can
be further divided into two basic paradigms: agglomera-
tive (bottom-up) and divisive (top-down). The agglomerative
method requires users to specify the neighboring techniques
used in clusters when comparing comparing the dissimilar-
ity, which leads to three types of approaches, i.e., single-
linkage, complete-linkage, and a compromise between these
two, average-linkage. The single-linkage method, which us-
es a minimum-distance metric between clusters, often leads
to long “chain” of clusters, whereas complete-linkage tends
to produce many small, compact clusters (Izenman (2008)).
Therefore, we use the average linkage agglomerative clus-
tering method as our default clustering method in order to
distribute variables evenly between clusters.

Accuracy Metric
To determine the accuracy of a learned network structure on
a simulated data set, we use the following accuracy metric
proposed by Metz (1978).

Accuracy =

∑
True positive +

∑
True negative∑

Total population
(6)

In practice, users should apply their own accuracy metrics
to evaluate the performance of a resulted Bayesian network.
For instance, to carry out a well-behaved Bayesian network
classifier, the classification rates would be a more suitable
accuracy metric. There is why we introduce an undefined
parameter, the number of clusters K into our method, which
can be tuned to the optimum in terms of users’ own accu-
racy metric. This benign design, in some sense, extends the
adaptability of our TSCB strategy in real world applications.
In the upcoming experiments, the variation of the previous
accuracy with respect to K will be investigated. It will show
that our strategy is effective to ameliorate traditional struc-
ture learning algorithms among a wide range of K.

Experimental Methodology and Results
In this section we examine our two-step clustering-based
(TSCB) Bayesian network structure learning strategy on
some benchmark data sets. To illustrate the effectiveness of
our method, two aspect of analyses will be displayed. First,
we investigate how accuracies of traditional structure learn-
ing algorithms can be improved with the help of our strategy.
Here we plug in six traditional structure learning algorithms
to evaluate the adaptability of our method when the param-
eter is tuned to the optimum. Furthermore, we inspect the
variation of accuracies on one of the synthetic data sets with
regard to the parameter, the number of clusters K. Second,
we record the running times in each step of our strategy and
demonstrate the correctness of our automatic mechanism for
generating prior information when it comes to the improve-
ment of time efficiency. Meanwhile, the total elapsed times



of our algorithm with the choice of parameters correspond-
ing to optimal states of accuracies on synthetic data sets are
tested when we embed different traditional algorithms. In
addition, we also analyze the variation of total running times
of our algorithm with regard to the parameter K.

Experimental Methodology
Our experimental evaluations are conducted on four differ-
ent sizes of commonly used Bayesian networks. Without any
particular clarification, a synthetic data set with 1000 in-
stances is randomly generated from each of Bayesian net-
work data. These network data are “asia” (Lauritzen and
Spiegelhalter (1988)), “insurance” (Binder et al. (1997)),
“alarm” (Beinlich et al. (1989)), and “hepar2” (Onisko
(2003)). See Table 2 for detailed descriptions of the network
data.

Network
Data

Number
of nodes

Number
of arcs

Average
degrees

“asia” 8 8 2.00
“insurance” 27 52 3.85
“alarm” 37 46 2.49
“hepar2” 70 123 3.51

Table 2: The Description of Benchmark Data sets

We use the R version 3.4.2 (2017-9-28) software with the
i5-4200U dual core processor to estimate the accuracy and
time efficiency of our algorithm. Essentially, the implemen-
tation of our clustering-based algorithm relies on the “clus-
ter” (Maechler et al. (2017)), “infotheo” (Meyer (2014)) and
“bnlearn” package (Scutari (2010)).

Accuracy Analysis
First, we are interested in how performances of tradition-
al structure learning algorithms can be ameliorated in terms
of the pre-assigned accuracy metric when we leverage clus-
tering to construct pre-existing arcs from data. Hence six
well-known algorithms are embedded into our two-step
clustering-based algorithm to assess the amendments of their
accuracies. Among these six traditional methods, four of
them, i.e., GS, IAMB, inter-IAMB, and MMPC, belong to
the constraint-based category while the other two, HC and
TABU, are heuristic searching algorithms in order to maxi-
mize the pre-assigned scores. Moreover, to reduce the ran-
domness of our experimental results, we repeat the random
generating process of a synthetic data set as well as the cor-
responding accuracy experiment for 100 times when embed-
ding different traditional algorithms.

Table 3 illustrates that our two-step clustering-based s-
trategy with optimal choice of the parameter helps to im-
prove the accuracies of traditional structure learning algo-
rithms by automatically generating prior information from
data. The improvements of accuracies seem not to be salient
on the absolute values of the records. This could result from
the fact that the instances simulated from data sets are not
large enough to uncover sufficient pre-existing arcs in the
first step. More importantly, due to the sparse configura-
tions of Bayesian networks when the number of variables

Methods “asia” “insurance” “alarm” “hepar2”
GS 0.9096

(0.8918)
0.9309
(0.9263)

0.9662
(0.9602)

0.9763
(0.9753)

IAMB 0.9084
(0.8896)

0.9287
(0.9218)

0.9715
(0.9686)

0.9747
(0.9741)

Inter-
IAMB

0.9082
(0.8936)

0.9281
(0.9208)

0.9716
(0.9689)

0.9748
(0.9742)

MMPC 0.8557
(0.8546)

0.9259
(0.9259)

0.9649
(0.9646)

0.9732
(0.9728)

HC 0.9766
(0.9766)

0.9328
(0.9293)

0.9768
(0.9724)

0.9824
(0.9822)

TABU 0.9664
(0.9657)

0.9422
(0.9312)

0.9788
(0.9744)

0.9814
(0.9810)

Table 3: Accuracy Result Comparisons Between the
TSCB Strategy and the Embedded Traditional Algo-
rithms. The records inside round brackets are the corre-
sponding accuracies of the embedded traditional algorithms.

is large, any minute improvement of accuracies can indeed
make a great difference to the resulted network structures.
For instance, Figure 1 visualizes the actual network, the one
learned with our TSCB strategy, and the one learned by the
embedded traditional algorithm on the benchmark synthetic
data set “alarm”. From Figure 1, one can note that our TSCB
strategy rectifies the error of traditional structure learning
algorithms by detecting some false negative arcs. Here a
benchmark “alarm” data set with 20000 instances works as
the tested data set and the usual grow-shrink algorithm is
plugged in.

However, skeptics may wonder how accuracies would
vary with respect to different values of the critical param-
eter, the number of clusters K. Figure 2 displays the ac-
curacy variations of our TSCB strategy with regards to K
on the “alarm” data set when we embed the grow-shrink
and hill-climbing algorithms. The accuracies of our two-step
clustering-based algorithm are always identical to the em-
bedded traditional algorithms when the number of clusters
K reaches the maximum, i.e., the number of variables in the
network data. The principle of this phenomenon is fairly in-
tuitive, since there is only one variable per cluster when K
is equal to the number of variables in a Bayesian network.

More importantly, Figure 2 demonstrates the robustness
of our TSCB strategy when the accuracies of traditional al-
gorithms can be improved among a wide range of effective
values of K. In actual experiments, we inspect the accuracy
variations on all mentioned benchmark data sets. Upon op-
timal stages, our TSCB strategy unanimously outweighs the
performances of embedded traditional algorithms, though
the effective ranges of the parameter K could vary on dif-
ferent data sets. For simplicity, we only present the results
on the “alarm” data set.

Time Analysis
Besides amendments on accuracies, our two-step clustering-
based strategy is able to reduce computational costs of tra-
ditional structure learning algorithms simultaneously. When
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(b) Learned by the TSCB Strategy
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(c) Learned by the GS algorithm

Figure 1: Network Configurations on the “alarm” Data Set. The red dotted arcs in each plotting are false positive arcs,
namely, the arcs that are wrongly learned by structure learning methods. The blue dashed arcs are false negative arcs, which are
not uncovered by structure learning algorithms.
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(b) Embed Hill-climbing

Figure 2: Accuracy Variation With Respect to the Num-
ber of Clusters. In each plot, there is a dash horizontal line,
indicating the raw accuracy of the embedded traditional al-
gorithm. The experiment is conducted on the “alarm” data
set with 20000 instances.

it is not always an easy task to measure the computation-
al costs of a method, recording the running times becomes
an acceptable approach. The running times may vary signifi-
cantly when the implementation of a method is conducted on
different machines and software platforms. Hence we tend
not to simply record the running times but rather make com-
parisons of total mean elapsed times and time distributions
at different states.

To speed up the learning process of our strategy, some
tradeoffs have to be made in time experiments. When com-
puting the dissimilarity matrix of a synthetic data set we u-
niformly transform those discrete variables by the previous-
ly mentioned technique and apply the usual 1-correlation
metric. The reason lies in the fact that it is time-consuming
to estimate the empirical mutual information for a data set
with discrete variables in practice. Since the refined Pear-
son’s correlation is able to reflect the dependencies between
variables, our strategy is still well-behaved in terms of accu-
racies, though the improvements could be less salient.

To verify the effectiveness of pre-existing arcs when it
comes to the acceleration of structure learning processes,
we first segment the timing procedure on a synthetic data
set into three sub-steps so as to record the elapsed times
on clustering (including the computation of the dissimilarity

matrix), learning arcs within clusters, and learning arcs be-
tween clusters (combining clusters), respectively. Here we
embed the grow-shrink algorithm and tune the parameter to
the optimum in terms of accuracy in each experiment. A-
gain, to reduce the randomness of our experimental results,
we repeat the generating process of a synthetic data set with
2000 random samples for 50 times and at the same time re-
peat the time recording process for 10 times. However, we
exclusively generate 5000 random samples from “hepar2”
network data because we want nearly all the levels in the
discrete variable to appear in the simulated data set. Table 4
shows that with the optimal choice of the parameter in terms
of accuracy, our TSCB can also reduce computational costs
of traditional algorithms.

Mean
Elapsed
Times / s

“asia” “insurance” “alarm” “hepar2”

Clustering 0.00230 0.00788 0.01076 0.04432
Within
clusters

0.00464 0.01670 0.05012 0.04744

Between
clusters

0.00962 0.16420 0.24640 1.46168

TSCB 0.01656 0.18878 0.30728 1.55344
Traditional 0.01010 0.19362 0.35900 1.65584

Table 4: Mean Elapsed Times Comparison.

There are two points that are noteworthy to be scrutinized
in Table 4. First, one can notice that the elapsed times for
learning arcs between clusters are less than the elapsed times
of the embedded traditional algorithms, especially when the
size of the network is large. These running times saved from
combining clusters in effect make an indispensable contri-
bution to the reduction of the overall elapsed times of our
TSCB strategy. More importantly, the improvement of time
efficiency of learning arcs between clusters indeed verifies
that such self-generating pre-existing arcs are able to accel-
erate the structure learning process. Second, since the clus-
tering procedure is time-efficient, our automatic mechanism
for generating prior information can be adapted to any tra-
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Figure 3: Experimental Results of Elapsed Times on the “alarm” Data Set. Figure 3a displays time distributions of 200
repeating experiments for each possible value of the parameter when we embed the GS algorithms. The rightmost boxplot rep-
resents the time distribution of the traditional algorithm. Figure 3b presents the time comparisons between the TSCB algorithm
and six traditional algorithms. For each pair of boxplots, the left one is for our TSCB method while the right one is for the
embedded traditional algorithm.

ditional structure learning algorithm without requiring dra-
matic extra computational costs.

Moreover, we are going to investigate the variations of
total elapsed of our TSCB strategy with respect to differ-
ent values of the parameter K. Additionally, we justify that
traditional structure learning algorithms from different cate-
gories benefit from our TSCB strategy in terms of time ef-
ficiency as well. Here we again conduct our experiments on
the benchmark data set “alarm” with 20000 instances. For
the time variation experiments, we only report the results
embedding the grow-shrink algorithms. Our actual experi-
ments on other traditional algorithms illustrate the similar
tendency and thus are omitted here. See Figure 3 for details.

As shown in Figure 3a, our TSCB strategy improves time
efficiency of the embedded traditional algorithm within a
wide range of K. The improvement is most salient when the
number of variables in most clusters is less than three. On
the other hand, in Figure 3b, when embedding different tra-
ditional algorithms, our TSCB strategy also helps to reduce
computational costs when the parameter is set to be optimal
in terms of accuracy, especially when the traditonal algo-
rithms come from the constraint-based category. Combined
with the accuracy results, it is sufficient to demonstrate that
a wide range of structure learning algorithms benefit from
our TSCB strategy in terms of accuracy and time efficiency,
though sometimes tuning the parameter is required.

Conclusion
In this paper we have proposed a two-step clustering-based
strategy for Bayesian network structure learning, which can
self-generate prior information from data. By dividing the
original set into clusters and learning the network struc-
ture within and between clusters, the performance of a wide
range of Bayesian network structure learning algorithms
have been further improved. Interestingly, we observe that
the optimal state of our TSCB strategy always attains when

nearly all the clusters contain no more than three variables,
which implies that the group of two or three nodes might be
the primitive unit of the network structure. The phenomenon
is consistent with the concept of “network motifs”, proposed
by Milo et al. (2002). In our future work, we are particularly
interested in investigating the physical meaning of each de-
tected cluster, which will give us more insight of the perfor-
mance improvement. Additionally, whether our TSCB strat-
egy can tackle the cases with the presence of latent variables
is also a possible direction for future research.
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Larrañaga, P.; Sierra, B.; Gallego, M. J.; Michelena, M. J.;
and Picaza, J. M. 1997. Learning Bayesian Network-
s by Genetic Algorithms: A Case Study in the Prediction
of Survival in Malignant Skin Melanoma. Berlin, Heidel-
berg: Springer Berlin Heidelberg. 261–272.

Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local Com-
putations with Probabilities on Graphical Structures and
Their Application to Expert Systems (with discussion).
Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 50(2):157–224.

MacQueen, J. 1967. Some Methods for Classification and
Analysis of Multivariate Observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, 281–297. Berkeley,
Calif.: University of California Press.

Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; and
Hornik, K. 2017. cluster: Cluster Analysis Basics and
Extensions. R package version 2.0.6.

Margaritis, D. 2003. Learning Bayesian Network Model
Structure from Data. Ph.D. Dissertation, Pittsburgh, USA.

Metz, C. 1978. Basic Principles of ROC Analysis. Seminars
in Nuclear Medicine 8(4).

Meyer, P. E. 2014. infotheo: Information-Theoretic Mea-
sures. R package version 1.2.0.

Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.;
Chklovskii, D.; and Alon, U. 2002. Network Motifs:
Simple Building Blocks of Complex Networks. Science
298(5594):824–827.

Nagarajan, R.; Scutari, M.; and Lébre, S. 2013. Bayesian
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