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Problem: Missing data is a persistent problem in biomedical research.
• Acquiring multiple data modalities for each patient is often expensive.

Challenge: Most of the existing data-imputation techniques can only
handle a single data modalities.
• Their predictions rely heavily on “similarities” between data points.

• Diverse test and data modalities supply complementary insight into a
distinct facet of the patient’s health or disease state.
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Prospective Solution: Synthetic multimodal data modeling.
• This framework utilizes foundation models to impute missing data

and to generate realistic synthetic samples (Carrillo-Perez et al., 2024).

• Foundation models integrate multimodal information into (low-dim)
embeddings so as to capture complex interactions between modalities.
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1 Dive deeper into the joint data distribution of modalities, and thus
enhance imputation quality.

2 Explore multi-faceted knowledge through in silico hypothesis testing
(i.e., via computer simulations).

• Perform interventions and ablation studies into certain data modalities
or study the effect on generated synthetic modalities (Roohani et al.,
2024).

• Synthetic data from the model can be recycled, facilitating
self-supervised learning (Krishnan et al., 2022).

Advantages of Synthetic Multimodal Data Modeling
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3 Offer unique flexibility when handling evolving patient data.
• Dynamically update the model representation of all modalities available,

i.e., online learning mechanism.

• This is achievable due to the gradient descent updates of modern ML
model training scheme.

4 Impact the future of disease understanding.
• Synthetic multimodal data modeling provides insights about how new

diseases are related to previously learned features.

Advantages of Synthetic Multimodal Data Modeling
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1 How can we evaluate the quality of generated data?
• Existing metrics, such as Fréchet inception distance, may contain flaws

(Stein et al., 2024).

dF(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
X×Y

||x − y||2 dγ(x, y)
]
,

where Γ(µ, ν) is the set of measures on X × Y with marginals µ and ν on
the first and second factor, respectively.

2 How can we address maliciously generated data, i.e., deepfake?
• Introduce visually imperceptible yet computationally detectable

watermarks.

Adoption Challenges of Synthetic Multimodal Data Modeling
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3 How can foundation models comply with data privacy regulations?
• Perhaps we can use federated learning (Kairouz et al., 2021).
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4 How can we maintain the algorithmic fairness of foundation models?
• Current data sources are often skewed towards developed countries and

male patients.

5 How can foundation models handle missing-not-at-random data?
• Models may be overfitting to specific missingness patterns in the

training data.

Adoption Challenges of Synthetic Multimodal Data Modeling
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Thank you!
More details can be found in

Carrillo-Perez, F., Pizurica, M., Marchal, K. and Gevaert, O. “Synthetic Multimodal Data
Modelling for Data Imputation.” Nature Biomedical Engineering (2024): 1-5.

https://www.nature.com/articles/s41551-024-01324-1.
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