#### Geometric Data Analysis Reading Group

# Robust Optimization and Inference on Manifolds

#### Paper Authors:

Lizhen Lin, Drew Lazar, Bayan Sarpabayeva, David B. Dunson

#### Paper link:

https://arxiv.org/abs/2006.06843

Presented by Yikun Zhang May 2, 2022





## **Table of Contents**

- 1 Background: Mean Estimation and Robust Statistics
- 2 Geometric Median on Manifolds
- 3 Robust Optimization on Manifolds
- 4 Simulations and Real-World Applications

# Background: Mean Estimation and Robust Statistics





# Do We Know How to Estimate the Mean?<sup>1</sup>

**Problem**: Given a random sample  $\{X_1,...,X_n\} \sim P$ , consider estimating the population mean  $\mu = \mathbb{E}_P(X_i) = \int x \, dP$ .

• We want to construct an estimator  $\widehat{\mu}_n \equiv \widehat{\mu}_n(X_1,...,X_n)$ .

<sup>&</sup>lt;sup>1</sup>The first few slides are modified from the Breiman Lecture of NeurlPS 2021 delivered by Gabor Lugosi (https://nips.cc/virtual/2021/invited-talk/22279).



## Do We Know How to Estimate the Mean?<sup>1</sup>

**Problem**: Given a random sample  $\{X_1, ..., X_n\} \sim P$ , consider estimating the population mean  $\mu = \mathbb{E}_P(X_i) = \int x \, dP$ .

• We want to construct an estimator  $\widehat{\mu}_n \equiv \widehat{\mu}_n(X_1,...,X_n)$ .

**Most popular estimator**: the sample mean  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i = \int x \, dP_n$ , where  $P_n$  is the empirical distribution.

Consistency: By the (strong) law of large number,

$$\lim_{n\to\infty} \bar{\mu}_n = \mu \quad \text{ with probability one.}$$

<sup>&</sup>lt;sup>1</sup>The first few slides are modified from the Breiman Lecture of NeurlPS 2021 delivered by Gabor Lugosi (https://nips.cc/virtual/2021/invited-talk/22279).



## Do We Know How to Estimate the Mean?<sup>1</sup>

**Problem**: Given a random sample  $\{X_1, ..., X_n\} \sim P$ , consider estimating the population mean  $\mu = \mathbb{E}_P(X_i) = \int x \, dP$ .

• We want to construct an estimator  $\widehat{\mu}_n \equiv \widehat{\mu}_n(X_1,...,X_n)$ .

**Most popular estimator**: the sample mean  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i = \int x \, dP_n$ , where  $P_n$  is the empirical distribution.

Consistency: By the (strong) law of large number,

$$\lim_{n\to\infty} \bar{\mu}_n = \mu \quad \text{ with probability one.}$$

#### Drawbacks:

- Require strict assumptions on *P* for tight confidence bounds.
- Sensitive to outliers.
- ...

<sup>&</sup>lt;sup>1</sup>The first few slides are modified from the Breiman Lecture of NeurlPS 2021 delivered by Gabor Lugosi (https://nips.cc/virtual/2021/invited-talk/22279).



# Mean Estimation: Confidence Bounds

#### **Question**

Given a confidence level  $\delta \in (0,1)$ , what is the smallest  $\epsilon \equiv \epsilon(n,\delta)$  such that

$$\|\widehat{\mu}_n - \mu\| \le \epsilon$$
 with probability at least  $1 - \delta$ ?



# Mean Estimation: Confidence Bounds

#### **Question**

Given a confidence level  $\delta \in (0,1)$ , what is the smallest  $\epsilon \equiv \epsilon(n,\delta)$  such that

$$\|\widehat{\mu}_n - \mu\| \le \epsilon$$
 with probability at least  $1 - \delta$ ?

Consider the sample mean  $\bar{\mu}_n$ :

• If we know  $\sigma^2 = \mathbb{E}_P(X_i - \mu)^2 < \infty$ , then by Chebyshev's inequality,

$$|\bar{\mu}_n - \mu| \le \sigma \sqrt{\frac{1}{n\delta}}$$
 with probability at least  $1 - \delta$ . (1)



# Mean Estimation: Confidence Bounds

#### Question

Given a confidence level  $\delta \in (0,1)$ , what is the smallest  $\epsilon \equiv \epsilon(n,\delta)$  such that

$$\|\widehat{\mu}_n - \mu\| \le \epsilon$$
 with probability at least  $1 - \delta$ ?

Consider the sample mean  $\bar{\mu}_n$ :

• If we know  $\sigma^2 = \mathbb{E}_P(X_i - \mu)^2 < \infty$ , then by Chebyshev's inequality,

$$|\bar{\mu}_n - \mu| \le \sigma \sqrt{\frac{1}{n\delta}}$$
 with probability at least  $1 - \delta$ . (1)

• If *P* is sub-Gaussian, i.e.,  $\mathbb{E}_P \exp \left[\lambda(X - \mu)\right] \le \exp \left(\frac{\sigma^2 \lambda^2}{2}\right)$ , then

$$|\bar{\mu}_n - \mu| \le \sigma \sqrt{\frac{2\log(2/\delta)}{n}}$$
 with probability at least  $1 - \delta$ . (2)



# Mean Estimation: Heavy-Tailed Distribution

### Theorem (Theorem 1 in Lugosi and Mendelson 2019a)

Let n > 5 be an integer,  $\sigma > 0$ , and  $\delta \in \left(\frac{e^{-n}}{2}, \frac{1}{2}\right)$ . Then, for any mean estimator  $\widehat{\mu}_n$ , there exists a distribution with mean  $\mu \in \mathbb{R}$  and variance  $\sigma^2 > 0$  such that

$$\mathbb{P}\left\{|\widehat{\mu}_n - \mu| > \sigma \sqrt{\frac{\log\left(1/(2\delta)\right)}{4n}}\right\} \ge \delta.$$



# Mean Estimation: Heavy-Tailed Distribution

### Theorem (Theorem 1 in Lugosi and Mendelson 2019a)

Let n > 5 be an integer,  $\sigma > 0$ , and  $\delta \in \left(\frac{e^{-n}}{2}, \frac{1}{2}\right)$ . Then, for any mean estimator  $\widehat{\mu}_n$ , there exists a distribution with mean  $\mu \in \mathbb{R}$  and variance  $\sigma^2 > 0$  such that

$$\mathbb{P}\left\{|\widehat{\mu}_n - \mu| > \sigma \sqrt{\frac{\log\left(1/(2\delta)\right)}{4n}}\right\} \ge \delta.$$

Without sub-Gaussianity (i.e., P is heavy-tailed), the  $\sqrt{1/\delta}$ -bound is the best that  $\bar{\mu}_n$  can achieve:

• for any  $\delta \in (0,1)$ , there is a distribution with variance  $\sigma^2$  such that

$$\mathbb{P}\left(|\bar{\mu}_n - \mu| > \sigma\sqrt{\frac{C}{n\delta}}\right) > \delta \quad \text{ for some constant } C > 0.$$



# Mean Estimation: Heavy-Tailed Distribution

### Theorem (Theorem 1 in Lugosi and Mendelson 2019a)

Let n > 5 be an integer,  $\sigma > 0$ , and  $\delta \in \left(\frac{e^{-n}}{2}, \frac{1}{2}\right)$ . Then, for any mean estimator  $\widehat{\mu}_n$ , there exists a distribution with mean  $\mu \in \mathbb{R}$  and variance  $\sigma^2 > 0$  such that

$$\mathbb{P}\left\{|\widehat{\mu}_n - \mu| > \sigma \sqrt{\frac{\log\left(1/(2\delta)\right)}{4n}}\right\} \ge \delta.$$

Without sub-Gaussianity (i.e., P is heavy-tailed), the  $\sqrt{1/\delta}$ -bound is the best that  $\bar{\mu}_n$  can achieve:

• for any  $\delta \in (0,1)$ , there is a distribution with variance  $\sigma^2$  such that

$$\mathbb{P}\left(|\bar{\mu}_n - \mu| > \sigma \sqrt{\frac{C}{n\delta}}\right) > \delta \quad \text{ for some constant } C > 0.$$

**Question**: Is there any estimator  $\widehat{\mu}_n$  that can achieve the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance?



# Mean Estimation: Median-of-Means (MoM)

Median-of-Means (Nemirovskij and Yudin, 1983; Jerrum et al., 1986; Alon et al., 1999): Divide the random sample  $\{X_1, ..., X_n\}$  into m groups  $B_1, ..., B_m$  with (roughly) equal size  $B = \lfloor \frac{n}{m} \rfloor$  and define

$$\widehat{\mu}_{MM} \equiv \text{Median}(Z_1, ..., Z_m),$$
 (3)

where 
$$Z_i = \frac{1}{|B_i|} \sum_{j \in B_i} X_j$$
 for  $i = 1, ..., m$ .



# Mean Estimation: Median-of-Means (MoM)

Median-of-Means (Nemirovskij and Yudin, 1983; Jerrum et al., 1986; Alon et al., 1999): Divide the random sample  $\{X_1, ..., X_n\}$  into m groups  $B_1, ..., B_m$  with (roughly) equal size  $B = \lfloor \frac{n}{m} \rfloor$  and define

$$\widehat{\mu}_{MM} \equiv \text{Median}(Z_1, ..., Z_m),$$
 (3)

where  $Z_i = \frac{1}{|B_i|} \sum_{j \in B_i} X_j$  for i = 1, ..., m.

- The MoM estimator is consistent as long as  $B \to \infty$  as  $n \to \infty$ .
- For any  $\delta \in (0,1)$ , if  $m = \lfloor 8 \log(1/\delta) \rfloor$ , then

$$|\widehat{\mu}_{MM} - \mu| \le \sigma \sqrt{\frac{32 \log(1/\delta)}{n}}$$
 with probability at least  $1 - \delta$ .

See Theorem 2 in Lugosi and Mendelson (2019a) and Proposition 1 in Yen-Chi's notes (http://faculty.washington.edu/yenchic/short\_note/note\_MoM.pdf).



• The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.



- The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.
  - One undesirable point is that the number of blocks  $m = \lfloor 8 \log(1/\delta) \rfloor$  depends on the confidence level  $\delta \in (0,1)$ .



- The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.
  - One undesirable point is that the number of blocks  $m = \lfloor 8 \log(1/\delta) \rfloor$  depends on the confidence level  $\delta \in (0,1)$ .
  - However, if  $\tau = \mathbb{E}_P\left[(X_i \mu)^3\right] < \infty$  exists, we may take  $m = \frac{2\sigma^3}{\tau}\sqrt{n}$  to achieve the sub-Gaussian performance; see Theorem 4 in Lugosi and Mendelson (2019a).



- The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.
  - One undesirable point is that the number of blocks  $m = \lfloor 8 \log(1/\delta) \rfloor$  depends on the confidence level  $\delta \in (0,1)$ .
  - However, if  $\tau = \mathbb{E}_P\left[(X_i \mu)^3\right] < \infty$  exists, we may take  $m = \frac{2\sigma^3}{\tau}\sqrt{n}$  to achieve the sub-Gaussian performance; see Theorem 4 in Lugosi and Mendelson (2019a).
  - Other mean estimators that attain the sub-Gaussian bound include
    - Catoni's estimator (Catoni, 2012): the solution to  $\sum_{i=1}^{n} \Psi(\alpha(X_i y)) = 0$ , where  $\Psi : \mathbb{R} \to \mathbb{R}$  is an increasing odd function.



- The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.
  - One undesirable point is that the number of blocks  $m = \lfloor 8 \log(1/\delta) \rfloor$  depends on the confidence level  $\delta \in (0,1)$ .
  - However, if  $\tau = \mathbb{E}_P\left[(X_i \mu)^3\right] < \infty$  exists, we may take  $m = \frac{2\sigma^3}{\tau}\sqrt{n}$  to achieve the sub-Gaussian performance; see Theorem 4 in Lugosi and Mendelson (2019a).
  - Other mean estimators that attain the sub-Gaussian bound include
    - Catoni's estimator (Catoni, 2012): the solution to  $\sum_{i=1}^{n} \Psi\left(\alpha(X_i y)\right) = 0$ , where  $\Psi: \mathbb{R} \to \mathbb{R}$  is an increasing odd function.
    - Trimmed mean (Tukey and McLaughlin, 1963):  $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \phi_{\alpha,\beta}(X_i)$  with  $\phi_{\alpha,\beta}(x) = \begin{cases} \alpha & \text{if } x < \alpha, \\ x & \text{if } \alpha \leq x \leq \beta, \\ \beta & \text{if } x > \beta \end{cases}$



- The MoM estimator attains the (sub-gaussian)  $\sqrt{\log(1/\delta)}$ -bound (2) for all distributions with finite variance, and this bound is *sharp*.
  - One undesirable point is that the number of blocks  $m = \lfloor 8 \log(1/\delta) \rfloor$  depends on the confidence level  $\delta \in (0,1)$ .
  - However, if  $\tau = \mathbb{E}_P\left[(X_i \mu)^3\right] < \infty$  exists, we may take  $m = \frac{2\sigma^3}{\tau}\sqrt{n}$  to achieve the sub-Gaussian performance; see Theorem 4 in Lugosi and Mendelson (2019a).
  - Other mean estimators that attain the sub-Gaussian bound include
    - Catoni's estimator (Catoni, 2012): the solution to  $\sum_{i=1}^{n} \Psi (\alpha(X_i y)) = 0$ , where  $\Psi : \mathbb{R} \to \mathbb{R}$  is an increasing odd function.
    - Trimmed mean (Tukey and McLaughlin, 1963):  $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \phi_{\alpha,\beta}(X_i)$  with

$$\phi_{\alpha,\beta}(x) = \begin{cases} \alpha & \text{if } x < \alpha, \\ x & \text{if } \alpha \le x \le \beta, \\ \beta & \text{if } x > \beta. \end{cases}$$

Robust Optimization and Inference on Manifolds

• MoM can be used even if P only has a finite moment  $\mathbb{E}_P\left[|X_i - \mu|^{1+\gamma}\right]$  of order  $1 + \gamma$  with  $\gamma \in (0, 1)$  (Bubeck et al., 2013; Devroye et al., 2016).



More importantly, the MoM estimator is robust to outliers!



More importantly, the MoM estimator is robust to outliers!

• Consider a set  $\mathcal{D}_s = \{\mathcal{Y} = \{Y_1, ..., Y_n\} : |\mathbf{Y}| = n, |\mathbf{X} \cap \mathbf{Y}| = n - s\}$ . The robustness of  $\widehat{\mu}_n(\mathcal{X})$  with  $\mathcal{X} = \{X_1, ..., X_n\}$  can be measured by the *breakdown point* as (Huber, 2004):

$$\epsilon^*\left(\widehat{\mu}_n(\mathcal{X})\right) = \max\left\{\frac{s}{n}: ||\widehat{\mu}_n(\mathcal{Y})|| < \infty \text{ for all } \mathcal{Y} \in \mathcal{X}_s\right\}.$$



#### More importantly, the MoM estimator is robust to outliers!

• Consider a set  $\mathcal{D}_s = \{\mathcal{Y} = \{Y_1, ..., Y_n\} : |\mathbf{Y}| = n, |\mathbf{X} \cap \mathbf{Y}| = n - s\}$ . The robustness of  $\widehat{\mu}_n(\mathcal{X})$  with  $\mathcal{X} = \{X_1, ..., X_n\}$  can be measured by the *breakdown point* as (Huber, 2004):

$$\epsilon^*\left(\widehat{\mu}_n(\mathcal{X})\right) = \max\left\{\frac{s}{n}: ||\widehat{\mu}_n(\mathcal{Y})|| < \infty \text{ for all } \mathcal{Y} \in \mathcal{X}_s\right\}.$$

• For instance, the sample mean has a breakdown point of 0 while the median has a breakdown point of 1/2.



#### More importantly, the MoM estimator is robust to outliers!

• Consider a set  $\mathcal{D}_s = \{\mathcal{Y} = \{Y_1, ..., Y_n\} : |\mathbf{Y}| = n, |\mathbf{X} \cap \mathbf{Y}| = n - s\}$ . The robustness of  $\widehat{\mu}_n(\mathcal{X})$  with  $\mathcal{X} = \{X_1, ..., X_n\}$  can be measured by the *breakdown point* as (Huber, 2004):

$$\epsilon^*\left(\widehat{\mu}_n(\mathcal{X})\right) = \max\left\{\frac{s}{n}: ||\widehat{\mu}_n(\mathcal{Y})|| < \infty \text{ for all } \mathcal{Y} \in \mathcal{X}_s\right\}.$$

- For instance, the sample mean has a breakdown point of 0 while the median has a breakdown point of 1/2.
- The MoM estimator  $\widehat{\mu}_{MM}(X)$  has the breakdown point as  $\frac{m-1}{2n}$ , where m is the number of blocks (Rodriguez and Valdora, 2019).



## Multivariate Mean Estimation

Let 
$$\{X_1,...,X_n\}$$
 be an i.i.d. sample in  $\mathbb{R}^d$  with  $\boldsymbol{\mu} = \mathbb{E}(X_i)$  and  $\Sigma = \mathbb{E}\left[(X_i - \boldsymbol{\mu})(X_i - \boldsymbol{\mu})^T\right]$ .

• The sample mean  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$  does not have a sub-Gaussian behavior for non-Gaussian and possibly heavy-tailed distributions.



## Multivariate Mean Estimation

Let  $\{X_1,...,X_n\}$  be an i.i.d. sample in  $\mathbb{R}^d$  with  $\boldsymbol{\mu} = \mathbb{E}(X_i)$  and  $\Sigma = \mathbb{E}\left[(X_i - \boldsymbol{\mu})(X_i - \boldsymbol{\mu})^T\right]$ .

• The sample mean  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$  does not have a sub-Gaussian behavior for non-Gaussian and possibly heavy-tailed distributions.

#### Definition

We say that a mean estimator  $\widehat{\mu}_n$  is *sub-Gaussian* if, for  $\delta \in (0,1)$ ,

$$||\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}|| \le C \left( \sqrt{\frac{\operatorname{Tr}(\Sigma)}{n}} + \sqrt{\frac{2\lambda_{\max}\log(1/\delta)}{n}} \right) \text{ with probability at least } 1 - \delta \right)$$

for some constant C, where  $\lambda_{\max} > 0$  is the maximal eigenvalue of  $\Sigma$  and  $||\cdot||$  is the Euclidean norm in  $\mathbb{R}^d$ .



## Multivariate Mean Estimation

Let  $\{X_1,...,X_n\}$  be an i.i.d. sample in  $\mathbb{R}^d$  with  $\boldsymbol{\mu} = \mathbb{E}(X_i)$  and  $\Sigma = \mathbb{E}\left[(X_i - \boldsymbol{\mu})(X_i - \boldsymbol{\mu})^T\right]$ .

• The sample mean  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$  does not have a sub-Gaussian behavior for non-Gaussian and possibly heavy-tailed distributions.

#### Definition

We say that a mean estimator  $\widehat{\mu}_n$  is *sub-Gaussian* if, for  $\delta \in (0,1)$ ,

$$||\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}|| \le C \left( \sqrt{\frac{\operatorname{Tr}(\Sigma)}{n}} + \sqrt{\frac{2\lambda_{\max}\log(1/\delta)}{n}} \right)$$
 with probability at least  $1 - \delta$ 

for some constant C, where  $\lambda_{\max} > 0$  is the maximal eigenvalue of  $\Sigma$  and  $||\cdot||$  is the Euclidean norm in  $\mathbb{R}^d$ .

**Question**: Can the (multivariate) MoM estimator attain the above sub-Gaussian bound?



There is no standard notion of a median for multivariate data!



There is no standard notion of a median for multivariate data!

We partition the dataset  $\{X_1,...,X_n\}\subset \mathbb{R}^d$  into m groups  $U_1,...,U_m$  and compute the within-group means  $Z_i=\frac{1}{|U_i|}\sum_{i\in U_i}X_i$ .

• Coordinate-wise median: for any  $\delta \in (0,1)$ , take  $m = \lfloor 8 \log(1/\delta) \rfloor$ ,

$$||\widehat{\mu}_n - \mu|| \le \sqrt{\frac{32 \text{Tr}(\Sigma) \log(d/\delta)}{n}}$$
 with probability at least  $1 - \delta$ .



There is no standard notion of a median for multivariate data!

We partition the dataset  $\{X_1,...,X_n\}\subset \mathbb{R}^d$  into m groups  $U_1,...,U_m$  and compute the within-group means  $Z_i=\frac{1}{|U_i|}\sum_{i\in U_i}X_i$ .

• Coordinate-wise median: for any  $\delta \in (0,1)$ , take  $m = \lfloor 8 \log(1/\delta) \rfloor$ ,

$$||\widehat{\mu}_n - \mu|| \le \sqrt{\frac{32 \text{Tr}(\Sigma) \log(d/\delta)}{n}}$$
 with probability at least  $1 - \delta$ .

• Geometric median:  $\widehat{\mu}_n \equiv \arg\min_{p \in \mathbb{R}^d} \frac{1}{m} \sum_{j=1}^m ||p - Z_j||$ . (It is close to the sub-Gaussian bound.)



There is no standard notion of a median for multivariate data!

We partition the dataset  $\{X_1,...,X_n\}\subset \mathbb{R}^d$  into m groups  $U_1,...,U_m$  and compute the within-group means  $Z_i=\frac{1}{|U_i|}\sum_{i\in U_i}X_i$ .

• Coordinate-wise median: for any  $\delta \in (0,1)$ , take  $m = \lfloor 8 \log(1/\delta) \rfloor$ ,

$$||\widehat{\mu}_n - \mu|| \le \sqrt{\frac{32 \text{Tr}(\Sigma) \log(d/\delta)}{n}}$$
 with probability at least  $1 - \delta$ .

- Geometric median:  $\widehat{\boldsymbol{\mu}}_n \equiv \underset{\boldsymbol{p} \in \mathbb{R}^d}{\arg\min} \frac{1}{m} \sum_{j=1}^m ||\boldsymbol{p} \boldsymbol{Z}_j||$ . (It is close to the sub-Gaussian bound.)
- The estimators that truly yield the sub-Gaussian performance are
  - ① Catoni-Giulini estimator (Catoni and Giulini, 2018):  $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i \cdot \min\left(1, \frac{1}{\alpha||X_i||}\right) \text{ with tuning parameter } \alpha > 0.$
  - the median-of-means tournaments (Lugosi and Mendelson, 2019b).

# Geometric Median on Manifolds





### Geometric Median on Manifolds

For a metric space  $(\mathcal{M}, \rho)$ , the *geometric median*  $p^*$  of  $p_1, ..., p_m \in \mathcal{M}$  minimizes the sum of distances to the points (Minsker, 2015):

$$p^* = \text{med}(p_1, ..., p_m) = \underset{p \in \mathcal{M}}{\arg \min} \frac{1}{m} \sum_{k=1}^m \rho(p, p_k).$$
 (4)

assuming that  $p^*$  exists. It is unique (Theorem 1 in Fletcher et al. 2008)

- (i) if the sectional curvatures of  $\mathcal M$  is nonpositive or
- (ii) if the section curvatures of  $\mathcal{M}$  are bounded by  $\Delta > 0$  and diam $(p_1, ..., p_m) \leq \frac{\pi}{2\sqrt{\Delta}}$ .



### Geometric Median on Manifolds

For a metric space  $(\mathcal{M}, \rho)$ , the *geometric median*  $p^*$  of  $p_1, ..., p_m \in \mathcal{M}$  minimizes the sum of distances to the points (Minsker, 2015):

$$p^* = \text{med}(p_1, ..., p_m) = \underset{p \in \mathcal{M}}{\arg \min} \frac{1}{m} \sum_{k=1}^m \rho(p, p_k).$$
 (4)

assuming that  $p^*$  exists. It is unique (Theorem 1 in Fletcher et al. 2008)

- (i) if the sectional curvatures of  $\mathcal{M}$  is nonpositive or
- (ii) if the section curvatures of  $\mathcal{M}$  are bounded by  $\Delta > 0$  and diam $(p_1,...,p_m) \leq \frac{\pi}{2\sqrt{\Delta}}$ .

When  $\mathcal{M}$  is a manifold, there are two different ways to define  $\rho$ .

① (*Extrinsic distance*) Given an embedding  $J : \mathcal{M} \to \mathbb{R}^d$  into the ambient space  $\mathbb{R}^d$ ,

$$\rho(p,q) = ||J(p) - J(q)||$$
 with  $||\cdot||$  being the Euclidean norm in  $\mathbb{R}^d$ .

(Intrinsic distance) Take ρ as the geodesic distance arising from a Riemannian structure on  $\mathcal{M}$ .

# Estimating the Geometric Median

To compute  $p^* = \arg\min_{p \in \mathcal{M}} \sum_{k=1}^m \rho(p, p_k) \equiv h(p)$ , we leverage the Ostresh's modification of the Weiszfeld Algorithm (Weiszfeld, 1937; Ostresh Jr, 1978; Fletcher et al., 2008):



# Estimating the Geometric Median

To compute  $p^* = \arg\min_{p \in \mathcal{M}} \sum_{k=1}^{m} \rho(p, p_k) \equiv h(p)$ , we leverage the Ostresh's modification of the Weiszfeld Algorithm (Weiszfeld, 1937; Ostresh Jr, 1978; Fletcher et al., 2008):

Compute the (Riemannian) gradient

$$\nabla h(p) = -\sum_{k=1}^{m} \frac{\operatorname{Log}_{p}(p_{k})}{\rho(p, p_{k})} \quad \text{when } p \neq p_{k}.$$



# Estimating the Geometric Median

To compute  $p^* = \arg\min_{p \in \mathcal{M}} \sum_{k=1}^{m} \rho(p, p_k) \equiv h(p)$ , we leverage the Ostresh's modification of the Weiszfeld Algorithm (Weiszfeld, 1937; Ostresh Jr, 1978; Fletcher et al., 2008):

Compute the (Riemannian) gradient

$$\nabla h(p) = -\sum_{k=1}^{m} \frac{\mathsf{Log}_{p}(p_{k})}{\rho(p, p_{k})}$$
 when  $p \neq p_{k}$ .

Apply the gradient descent iteration

$$p^{(t+1)} \leftarrow \mathtt{Exp}_{p^{(t)}} \left( \eta' \cdot v^{(t)} \right) \text{ with } v^{(t)} = \sum_{k \in I_t} \frac{\mathtt{Log}_{p^{(t)}}(p_k)}{\rho(p^{(t)}, p_k)} \cdot \left( \sum_{k \in I_t} \frac{1}{\rho(p^{(t)}, p_k)} \right)^{-1} \cdot \left( \sum_{k \in I_t} \frac{1}{\rho(p^{(t)}, p_k)} \right)^$$

Yikun Zhang Robust Optimizat

where  $\eta' \in [0,2]$  is the step size and  $I_t = \{k \in \{1,...,m\} : p_k \neq p^{(t)}\}.$ 



# Estimating the Geometric Median

To compute  $p^* = \arg\min_{p \in \mathcal{M}} \sum_{k=1}^{m} \rho(p, p_k) \equiv h(p)$ , we leverage the Ostresh's modification of the Weiszfeld Algorithm (Weiszfeld, 1937; Ostresh Jr, 1978; Fletcher et al., 2008):

Ompute the (Riemannian) gradient

$$\nabla h(p) = -\sum_{k=1}^{m} \frac{\mathsf{Log}_{p}(p_{k})}{\rho(p, p_{k})}$$
 when  $p \neq p_{k}$ .

Apply the gradient descent iteration

$$p^{(t+1)} \leftarrow \text{Exp}_{p^{(t)}} \left( \eta' \cdot v^{(t)} \right) \text{ with } v^{(t)} = \sum_{k \in I_t} \frac{\text{Log}_{p^{(t)}}(p_k)}{\rho(p^{(t)}, p_k)} \cdot \left( \sum_{k \in I_t} \frac{1}{\rho(p^{(t)}, p_k)} \right)^{-1}$$

where  $\eta' \in [0, 2]$  is the step size and  $I_t = \{k \in \{1, ..., m\} : p_k \neq p^{(t)}\}.$ 

**Convergence**:  $\lim_{t\to\infty} p^{(t)} = p^*$  when  $\mathcal M$  has a nonnegative sectional curvature.



# Properties of the Geometric Median

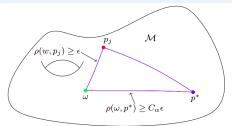
#### Lemma (Lemma 2.1 in Minsker 2015; Lin et al. 2020)

Let  $p_1, ..., p_m \in M$  and  $p^* = med(p_1, ..., p_m)$  as in (4).

(a) Let  $\rho$  be the extrinsic distance of an embedding  $J: \mathcal{M} \to \widetilde{\mathcal{M}} \subset \mathbb{R}^d$ ,  $w \in \mathcal{M}$ ,  $\psi$  be the angle between  $J(w) - J(p^*)$  and the tangent space  $T_{J(p^*)}\widetilde{\mathcal{M}}$ , and

$$C_{\alpha} = \frac{1-\alpha}{\sqrt{1-2\alpha\cos\psi - \alpha\sin\psi}}$$
 with  $\alpha \in \left(0,\cot\psi\tan\frac{\psi}{2}\right)$ .

If  $\rho(w, p^*) \ge C_{\alpha}\epsilon$ , then there exists an index set  $T \subset \{1, ..., m\}$  with  $|T| \ge \alpha m$  such that  $\rho(p_j, w) \ge \epsilon$  for any  $j \in T$ .





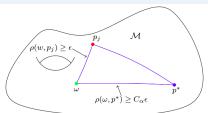
# Properties of the Geometric Median (Cont'd)

#### Lemma (Continued)

Let  $p_1,...,p_m \in \mathcal{M}$  and  $p^* = med(p_1,...,p_m)$  as in (4). (b) Let  $\rho$  be an intrinsic distance on  $\mathcal{M}$  with respect to some Riemannian structure,  $w \in \mathcal{M}$ , the logarithm map  $\operatorname{Log}_{p^*}$  be K-Lipschitz continuous from  $B(w,\epsilon)$  to  $T_{p^*}\mathcal{M}$ , and

$$C_{\alpha} = K(1-\alpha)\sqrt{\frac{1}{1-2\alpha}}$$
 with  $\alpha \in \left(0, \frac{1}{2}\right)$ .

If  $\rho(w, p^*) \ge C_{\alpha}\epsilon$ , then there exists an index set  $T \subset \{1, ..., m\}$  with  $|T| \ge \alpha m$  such that  $\rho(p_j, w) \ge \epsilon$  for any  $j \in T$ .



#### Proof of the Lemma (Sketch)

*Proof.* Let 
$$L(p) = \sum_{k=1}^{m} \rho(p, p_k)$$
. Consider the geodesic curve  $\gamma(t) = \operatorname{Exp}_{p^*}(tv)$  with  $v = \operatorname{Log}_{p^*} w \in T_{p^*} \mathcal{M}$ . Then,

$$dL_{p^*}(v) = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(\gamma(0))}{t} = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(p^*)}{t} \ge 0,$$

since  $L(p^*)$  minimizes L for all  $p \in \mathcal{M}$ .



#### Proof of the Lemma (Sketch)

*Proof.* Let  $L(p) = \sum_{k=1}^{m} \rho(p, p_k)$ . Consider the geodesic curve  $\gamma(t) = \operatorname{Exp}_{p^*}(tv)$  with  $v = \operatorname{Log}_{p^*}w \in T_{p^*}\mathcal{M}$ . Then,

$$dL_{p^*}(v) = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(\gamma(0))}{t} = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(p^*)}{t} \ge 0,$$

since  $L(p^*)$  minimizes L for all  $p \in \mathcal{M}$ . By some algebra, one obtains that

$$\frac{dL_{p^*}(v)}{||v||} = -\sum_{j:p_j \neq p^*} \frac{\langle v, v_j \rangle}{||v|| ||v_j||} + \sum_{j=1}^m \mathbb{1}_{\{p_j = p^*\}},$$

where  $v_j = \text{Log}_{p^*} p_j$ .



#### Proof of the Lemma (Sketch)

*Proof.* Let 
$$L(p) = \sum_{k=1}^{m} \rho(p, p_k)$$
. Consider the geodesic curve  $\gamma(t) = \operatorname{Exp}_{p^*}(tv)$  with  $v = \operatorname{Log}_{p^*}w \in T_{p^*}\mathcal{M}$ . Then,

$$dL_{p^*}(v) = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(\gamma(0))}{t} = \lim_{t \to 0^+} \frac{L(\gamma(t)) - L(p^*)}{t} \ge 0,$$

since  $L(p^*)$  minimizes L for all  $p \in \mathcal{M}$ . By some algebra, one obtains that

$$\frac{dL_{p^*}(v)}{||v||} = -\sum_{j:p_j \neq p^*} \frac{\langle v, v_j \rangle}{||v|| \, ||v_j||} + \sum_{j=1}^m \mathbb{1}_{\{p_j = p^*\}},$$

where  $v_j = \text{Log}_{p^*} p_j$ . Assume, by contradiction and without the loss of generality, that

$$\rho(w, p_i) < \epsilon$$
 for  $i = 1, ..., |(1 - \alpha)m| + 1$ ,

while  $\rho(w, p^*) \geq C_{\alpha} \epsilon$ .

By the Lipschitz continuity of  $\operatorname{Log}_{p^*}$  from  $B(w, \epsilon)$  to  $T_{p^*}\mathcal{M}$ , for  $i = 1, ..., |(1 - \alpha)m| + 1$ ,

$$\left|\left|v_j - v\right|\right| = \left|\left|\operatorname{Log}_{p^*} p_j - \operatorname{Log}_{p^*} w\right|\right| \leq K \cdot d_g(p_j, w) = K \cdot \rho(p_j, w) \leq K\epsilon.$$

By the Lipschitz continuity of  $\operatorname{Log}_{p^*}$  from  $B(w, \epsilon)$  to  $T_{p^*}\mathcal{M}$ , for  $j = 1, ..., |(1 - \alpha)m| + 1$ ,

$$\left|\left|v_{j}-v\right|\right| = \left|\left|\operatorname{Log}_{p^{*}}p_{j}-\operatorname{Log}_{p^{*}}w\right|\right| \leq K \cdot d_{g}(p_{j},w) = K \cdot \rho(p_{j},w) \leq K\epsilon.$$

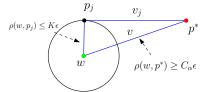
This implies that  $\widehat{\sin(v_j,v)} \leq \frac{K}{C_{\alpha}}$ .



By the Lipschitz continuity of  $\operatorname{Log}_{p^*}$  from  $B(w, \epsilon)$  to  $T_{p^*}\mathcal{M}$ , for  $i = 1, ..., |(1 - \alpha)m| + 1$ ,

$$\left|\left|v_{j}-v\right|\right|=\left|\left|\operatorname{Log}_{p^{*}}p_{j}-\operatorname{Log}_{p^{*}}w\right|\right|\leq K\cdot d_{g}(p_{j},w)=K\cdot \rho(p_{j},w)\leq K\epsilon.$$

This implies that  $\widehat{\operatorname{sin}(v_j,v)} \leq \frac{K}{C_{\alpha}}$ .



Thus, whenever  $C_{\alpha} > K(1-\alpha)\sqrt{\frac{1}{1-2\alpha}}$ , we have that

$$\frac{dL_{p^*}(v)}{||v||} = -\sum_{i: p, \neq p^*} \cos(\widehat{v_j, v}) + \sum_{i=1}^m \mathbb{1}_{\{p_j = p^*\}} \le -(1-\alpha)m\sqrt{1 - \frac{K^2}{C_\alpha^2}} + \alpha m < 0,$$

which is a contradiction.



There are many Riemannian manifolds with *K*-Lipschitz continuous logarithm map.

- **0** *d-dimensional sphere*  $S^d = \{p \in \mathbb{R}^{d+1} : ||p|| = 1\}$ : Log<sub>p</sub>(·) on  $S^d$  is 2-Lipschitz continuous from  $B(p, \pi/2)$  to  $T_pS^d$  for all  $p ∈ S^d$ .
- ② Planar shape space  $\Sigma_2^k = S^{2k-3}/S^1$ :  $\operatorname{Log}_p(\cdot)$  on  $\Sigma_2^k$  is 2-Lipschitz continuous from  $B(p, \pi/4)$  to  $T_p\Sigma_2^k$  for all  $p \in S^d$ .
- ◎ Positive definite matrices  $PD(n) \subset \mathbb{R}^{n \times n}$ : Log<sub>p</sub>(·) is 1-Lipschitz continuous at any  $p \in PD(n)$ .





Let Q be a probability distribution on some space  $\mathcal{X}$  and  $\mathcal{M}$  be a manifold. Consider estimating the *population parameter* 

$$\mu = \operatorname*{arg\,min}_{p \in \mathcal{M}} L^*(p),$$

where, for some loss function L,

$$L^*(p) = \int_{\mathcal{X}} L(p, x) Q(dx).$$



Let Q be a probability distribution on some space  $\mathcal{X}$  and  $\mathcal{M}$  be a manifold. Consider estimating the *population parameter* 

$$\mu = \operatorname*{arg\,min}_{p \in \mathcal{M}} L^*(p),$$

where, for some loss function L,

$$L^*(p) = \int_{\mathcal{X}} L(p, x) Q(dx).$$

- *Fréchet mean*:  $\underset{p \in \mathcal{M}}{\arg \min} \int_{\mathcal{M}} \rho^2(p, x) Q(dx)$  with Q supported on  $\mathcal{M}$ .
- *Geometric median*:  $\underset{p \in \mathcal{M}}{\arg \min} \int_{\mathcal{M}} \rho(p, x) Q(dx)$  with Q supported on  $\mathcal{M}$ .



Let Q be a probability distribution on some space  $\mathcal{X}$  and  $\mathcal{M}$  be a manifold. Consider estimating the *population parameter* 

$$\mu = \operatorname*{arg\,min}_{p \in \mathcal{M}} L^*(p),$$

where, for some loss function L,

$$L^*(p) = \int_{\mathcal{X}} L(p, x) Q(dx).$$

- *Fréchet mean*:  $\underset{p \in \mathcal{M}}{\arg \min} \int_{\mathcal{M}} \rho^2(p, x) Q(dx)$  with Q supported on  $\mathcal{M}$ .
- *Geometric median*:  $\underset{p \in \mathcal{M}}{\arg \min} \int_{\mathcal{M}} \rho(p, x) Q(dx)$  with Q supported on  $\mathcal{M}$ .

In practice, given a random sample  $\{X_1, ..., X_n\} \sim Q$ , the population parameter  $\mu$  can be estimated by the *empirical risk estimator* 

$$\widehat{\mu}_n = \underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n L(p, X_i).$$



**Objective**: 
$$\mu = \underset{p \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p, x) Q(dx)$$
.

The geometric median of subset optimizers is defined as follows.



**Objective**: 
$$\mu = \underset{p \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p, x) Q(dx)$$
.

The geometric median of subset optimizers is defined as follows.

① Divide the dataset  $\{X_1, ..., X_n\}$  into m subsets  $U_1, ..., U_m$  with (roughly) equal size  $\lfloor n/m \rfloor$ .



**Objective**: 
$$\mu = \underset{p \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p, x) Q(dx)$$
.

The *geometric median of subset optimizers* is defined as follows.

- ① Divide the dataset  $\{X_1, ..., X_n\}$  into m subsets  $U_1, ..., U_m$  with (roughly) equal size  $\lfloor n/m \rfloor$ .
- ② Compute  $\mu_j = \underset{p \in \mathcal{M}}{\operatorname{arg \, min}} \frac{1}{|U_j|} \sum_{k \in U_j} L(p, X_k)$  for j = 1, ..., m.

**Objective**: 
$$\mu = \underset{p \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p, x) Q(dx)$$
.

The geometric median of subset optimizers is defined as follows.

- ① Divide the dataset  $\{X_1, ..., X_n\}$  into m subsets  $U_1, ..., U_m$  with (roughly) equal size  $\lfloor n/m \rfloor$ .
- 2 Compute  $\mu_j = \underset{p \in \mathcal{M}}{\operatorname{arg \, min}} \frac{1}{|U_j|} \sum_{k \in U_j} L(p, X_k)$  for j = 1, ..., m.
- **1** The final estimator is  $\widehat{\mu}^* = \underset{p \in \mathcal{M}}{\arg\min} \sum_{j=1}^m \rho(p, \mu_j)$ .

 $\hat{\mu}^*$  inherits the desired robustness properties in estimating the population parameter  $\mu$ .



#### Concentration Bound

#### Theorem (Theorem 3.1 in Lin et al. 2020)

Let  $\mu_1, ..., \mu_m$  be some independent estimators of  $\mu$  and  $\mu^* = med(\mu_1, ..., \mu_m)$ .

- (a) If  $\rho(p,q) = ||J(p) J(q)||$  with  $J: \mathcal{M} \to \widetilde{\mathcal{M}} \subset \mathbb{R}^d$ , we assume that for any  $w \in \mathcal{M}$ , the angle between  $J(w) J(\mu^*)$  and the tangent space  $T_{J(\mu^*)}\widetilde{\mathcal{M}}$  is no bigger than  $\bar{\psi}$ . For any  $\alpha \in \left(0, \cot \bar{\psi} \tan \frac{\bar{\psi}}{2}\right)$ , set  $\bar{C}_{\alpha} = \frac{1-\alpha}{\sqrt{1-2\alpha}\cos \bar{\psi}-\alpha\sin \bar{\psi}}$ .
- (b) Let  $\rho$  be an intrinsic distance on  $\mathcal{M}$ . Assume that  $\operatorname{Log}_{\mu^*}$  is K-Lipschitz continuous from  $B(\mu^*, \epsilon)$  to  $T_{\mu^*}\mathcal{M}$ . For any  $\alpha \in \left(0, \frac{1}{2}\right)$ , set

$$\bar{C}_{\alpha} = K(1 - \alpha) \sqrt{\frac{1}{1 - 2\alpha}}.$$

*Under (a) or (b), if*  $\mathbb{P}\left\{\rho(\mu_j,\mu) > \epsilon\right\} \leq \eta$  *for* j = 1,...,m *with*  $\eta < \alpha$ *, then* 

$$\mathbb{P}\left\{\rho(\mu^*, \mu) > \bar{C}_{\alpha}\epsilon\right\} \le \exp\left[-m \cdot \phi(\alpha, \eta)\right],\,$$

where 
$$\phi(\alpha, \eta) = (1 - \alpha) \log \left(\frac{1 - \alpha}{1 - \eta}\right) + \alpha \log \frac{\alpha}{\eta}$$
.



#### Proof of the Theorem (Sketch)

*Proof.* Note that when  $\psi < \bar{\psi}$ , we have that  $C_{\alpha} \leq \bar{C}_{\alpha}$  and  $\cot \bar{\psi} \tan \frac{\bar{\psi}}{2} \leq \cot \psi \tan \frac{\psi}{2}$ . By the previous lemma,

$$\mathbb{P}\left\{\rho(\mu^*, \mu) > \bar{C}_{\alpha}\epsilon\right\} \leq \mathbb{P}\left\{\rho(\mu^*, \mu) > C_{\alpha}\epsilon\right\}$$

$$\leq \mathbb{P}\left(\sum_{j=1}^{m} \mathbb{1}_{\{\rho(\mu_j, \mu) > \epsilon\}} > \alpha m\right)$$

$$\leq \exp\left[-m \cdot \phi(\alpha, \eta)\right],$$

where we leverage a coupling result (Lemma 23 in Lerasle and Oliveira 2011) and Chernoff's bound to obtain the last inequality.



# Applications of the Concentration Bound

Recall our mean estimation problem via the MoM estimator.

- ① Partition the dataset  $\{X_1,...,X_n\} \subset \mathbb{R}^d$  into m groups  $U_1,...,U_m$  and compute the within-group means  $Z_i = \frac{1}{|U_i|} \sum_{j \in U_i} X_j$ .
- ② Define the geometric median estimator  $\widehat{\mu}_n = \underset{p \in \mathbb{R}^d}{\arg\min} \frac{1}{m} \sum_{j=1}^m ||p Z_j||.$



# Applications of the Concentration Bound

Recall our mean estimation problem via the MoM estimator.

- ① Partition the dataset  $\{X_1,...,X_n\} \subset \mathbb{R}^d$  into m groups  $U_1,...,U_m$  and compute the within-group means  $Z_i = \frac{1}{|U_i|} \sum_{j \in U_i} X_j$ .
- Obeline the geometric median estimator  $\widehat{\mu}_n = \underset{p \in \mathbb{R}^d}{\arg\min} \frac{1}{m} \sum_{j=1}^m ||p \mathbf{Z}_j||.$

Set  $\alpha_* = \frac{7}{18}$  and  $\eta_* = 0.1$ . For any  $\delta \in (0,1)$ , we take

$$m = \left\lfloor \frac{\log(1/\delta)}{\phi(\alpha_*, \eta_*)} \right\rfloor + 1 \le \lfloor 3.5 \log(1/\delta) \rfloor + 1.$$

Then,

$$||\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}|| \le 11\sqrt{\frac{\operatorname{Tr}(\Sigma)\log(1.4/\delta)}{n}}$$
 with probability at least  $1 - \delta$ .

See Corollary 4.1 in Minsker (2015).



The geometric median of subset optimizers is  $\widehat{\mu}^* = \arg\min_{p \in \mathcal{M}} \sum_{j=1}^m \rho(p, \mu_j)$ .



The geometric median of subset optimizers is  $\widehat{\mu}^* = \underset{p \in \mathcal{M}}{\arg\min} \sum_{j=1}^m \rho(p, \mu_j)$ .

• Larger  $m \Longrightarrow \text{more robust and tighter concentration bound around}$  the population parameter  $\mu = \underset{n \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p, x) \, Q(dx).$ 



The geometric median of subset optimizers is  $\widehat{\mu}^* = \arg\min_{p \in \mathcal{M}} \sum_{j=1}^m \rho(p, \mu_j)$ .

- Larger  $m \Longrightarrow \text{more robust and tighter concentration bound around}$  the population parameter  $\mu = \underset{n \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p,x) \, Q(dx)$ .
- However, the within-group sample size  $\lfloor n/m \rfloor$  should also be large so that each subset estimator behaves well, i.e.,

$$\mathbb{P}\left\{\rho(\mu_j,\mu) > \epsilon\right\} \le \eta$$
 for  $j = 1,...,m$  with a small  $\eta$ .



The geometric median of subset optimizers is  $\widehat{\mu}^* = \arg\min_{p \in \mathcal{M}} \sum_{j=1}^m \rho(p, \mu_j)$ .

- Larger  $m \Longrightarrow \text{more robust and tighter concentration bound around}$  the population parameter  $\mu = \underset{n \in \mathcal{M}}{\arg\min} \int_{\mathcal{X}} L(p,x) \, Q(dx).$
- However, the within-group sample size  $\lfloor n/m \rfloor$  should also be large so that each subset estimator behaves well, i.e.,

$$\mathbb{P}\left\{\rho(\mu_{j},\mu)>\epsilon\right\}\leq\eta\quad\text{ for }j=1,...,m\text{ with a small }\eta.$$

For a given confidence level  $\delta \in (0,1)$ , one can determine the number of subsets, m, to achieve a small  $\eta$ .

• However, in practice,  $\eta$  may depend on the unknown parameter; see Example 2 in Lin et al. (2020).

# Simulations and Real-World Applications





# Simulation Studies on $S^d$

**Problem**: Estimate the intrinsic and extrinsic means of the von Mises Fisher distribution in the presence of outliers.

$$\mathrm{vMF}(\mu,\kappa) \text{ on } \mathbb{R}^d \quad \sim \quad f_d(x;\mu,\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2}\mathcal{I}_{d/2-1}(\kappa)} \cdot \exp(\kappa \mu^T x).$$



# Simulation Studies on $S^d$

**Problem**: Estimate the intrinsic and extrinsic means of the von Mises Fisher distribution in the presence of outliers.

$$\mathrm{vMF}(\mu,\kappa) \text{ on } \mathbb{R}^d \quad \sim \quad f_d(x;\mu,\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2}\mathcal{I}_{d/2-1}(\kappa)} \cdot \exp(\kappa \mu^T x).$$

Computing sample statistics on  $\{p_1,...,p_n\} \subset S^d$ .

• Intrinsic mean:  $\underset{x \in S^d}{\operatorname{arg min}} \sum_{i=1}^n \arccos^2(x^T p_i)$ .



#### Simulation Studies on $S^d$

**Problem**: Estimate the intrinsic and extrinsic means of the von Mises Fisher distribution in the presence of outliers.

$$\mathrm{vMF}(\mu,\kappa) \text{ on } \mathbb{R}^d \quad \sim \quad f_d(x;\mu,\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2}\mathcal{I}_{d/2-1}(\kappa)} \cdot \exp(\kappa \mu^T x).$$

Computing sample statistics on  $\{p_1,...,p_n\} \subset S^d$ .

• *Intrinsic mean*:  $\underset{x \in S^d}{\arg\min} \sum_{i=1}^{\infty} \arccos^2(x^T p_i)$ . By the Lagrangian multiplier, the intrinsic mean on  $S^d$  can be obtained by a fixed-point iteration

$$\mu^{(t+1)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_i(\mu^{(t)}) p_i}{\left| \left| \sum_{i=1}^{n} \gamma_i(\mu^{(t)}) p_i \right| \right|} \quad \text{for } t = 0, 1, \dots \text{ with } \gamma_i(x) = \frac{\arccos(x^T p_i)}{\sqrt{1 - (x^T p_i)^2}}.$$

Notes: Its derivation is similar to our directional mean shift algorithm; see Section 2.2 in Zhang and Chen (2021).



#### Simulation Studies on S<sup>d</sup>

**Problem**: Estimate the intrinsic and extrinsic means of the von Mises Fisher distribution in the presence of outliers.

$$\mathrm{vMF}(\mu,\kappa) \text{ on } \mathbb{R}^d \quad \sim \quad f_d(x;\mu,\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2}\mathcal{I}_{d/2-1}(\kappa)} \cdot \exp(\kappa \mu^T x).$$

Computing sample statistics on  $\{p_1,...,p_n\} \subset S^d$ .

• *Intrinsic mean*:  $\underset{x \in S^d}{\arg\min} \sum_{i=1}^{\infty} \arccos^2(x^T p_i)$ . By the Lagrangian multiplier, the intrinsic mean on  $S^d$  can be obtained by a fixed-point iteration

$$\mu^{(t+1)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_i(\mu^{(t)}) p_i}{\left| \left| \sum_{i=1}^{n} \gamma_i(\mu^{(t)}) p_i \right| \right|} \quad \text{for } t = 0, 1, \dots \text{ with } \gamma_i(x) = \frac{\arccos(x^T p_i)}{\sqrt{1 - (x^T p_i)^2}}.$$

Notes: Its derivation is similar to our directional mean shift algorithm; see Section 2.2 in Zhang and Chen (2021).

• *Intrinsic median*:  $\underset{x \in S^d}{\arg \min} \sum_{i=1}^n \arccos \left( x^T p_i \right)$  by the modified Weiszfeld's algorithm.

# Simulation Studies on *S*<sup>d</sup> (Cont'd)

• Extrinsic mean:  $\mathcal{P}\left(\frac{1}{n}\sum_{i=1}^{n}J(p_i)\right)$ , where  $J:\mathcal{M}\to\widetilde{\mathcal{M}}\subset\mathbb{R}^d$  is the embedding map and  $\mathcal{P}:\mathbb{R}^d\to\mathcal{M}$  is the projection map. When  $\mathcal{M}=S^d$ , the extrinsic mean is  $\frac{\sum_{i=1}^{n}p_i}{||\sum_{i=1}^{n}p_i||}$ , i.e., the spherical mean.

# Simulation Studies on *S*<sup>d</sup> (Cont'd)

- Extrinsic mean:  $\mathcal{P}\left(\frac{1}{n}\sum_{i=1}^{n}J(p_{i})\right)$ , where  $J:\mathcal{M}\to\widetilde{\mathcal{M}}\subset\mathbb{R}^{d}$  is the embedding map and  $\mathcal{P}:\mathbb{R}^{d}\to\mathcal{M}$  is the projection map. When  $\mathcal{M}=S^{d}$ , the extrinsic mean is  $\frac{\sum_{i=1}^{n}p_{i}}{||\sum_{i=1}^{n}p_{i}||}$ , i.e., the spherical mean.
- Extrinsic median:  $\underset{p \in S^d}{\arg\min} \sum_{i=1}^n ||x p_i||$  by the projected gradient descent on  $S^d$  (Weiszfeld's algorithm).

# Simulation Studies on *S*<sup>d</sup> (Cont'd)

- Extrinsic mean:  $\mathcal{P}\left(\frac{1}{n}\sum_{i=1}^{n}J(p_{i})\right)$ , where  $J:\mathcal{M}\to\widetilde{\mathcal{M}}\subset\mathbb{R}^{d}$  is the embedding map and  $\mathcal{P}:\mathbb{R}^{d}\to\mathcal{M}$  is the projection map. When  $\mathcal{M}=S^{d}$ , the extrinsic mean is  $\frac{\sum_{i=1}^{n}p_{i}}{||\sum_{i=1}^{n}p_{i}||}$ , i.e., the spherical mean.
- Extrinsic median:  $\underset{p \in S^d}{\arg\min} \sum_{i=1}^n ||x p_i||$  by the projected gradient descent on  $S^d$  (Weiszfeld's algorithm).

**Evaluation metric**. Repeat the simulation for several times and compute the averages based on the following measures:

- the intrinsic distance  $\rho(\mu^*, \mu)$  from the true mean  $\mu$  to the geometric median of subset means  $\mu^*$ .
- the average intrinsic distance  $\overline{\rho(\mu_i,\mu)} = \frac{1}{m} \sum_{k=1}^{m} \rho(\mu_i,\mu)$  from  $\mu$  to the subset means  $\mu_k, k = 1, ..., m$ .



#### Results on $S^2$

| k  | $\overline{ ho(\hat{\mu},\mu)}$ | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho}(\mu_i,\mu)}$ | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho}(\mu_i,\mu)}$ |
|----|---------------------------------|-----------------------------|----------------------------------------|-----------------------------|----------------------------------------|
| 0  | 0.0597                          | 0.0583                      | 0.0947                                 | 0.0514                      | 0.1496                                 |
| 5  | 0.0647                          | 0.0615                      | 0.1159                                 | 0.0531                      | 0.1652                                 |
| 10 | 0.1194                          | 0.1116                      | 0.1414                                 | 0.1018                      | 0.2113                                 |
| 15 | 0.1819                          | 0.1731                      | 0.1973                                 | 0.1631                      | 0.2419                                 |
|    | sample mean (m=1)               | m=5                         |                                        | m=15                        |                                        |

| k  | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ | $\overline{ ho(\hat{m},\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ |  |
|----|-----------------------------|----------------------------------------|-------------------------------|----------------------------------------|--|
| 0  | 0.0455                      | 0.2118                                 | 0.0424                        | 0.2829                                 |  |
| 5  | 0.0453                      | 0.2350                                 | 0.0447                        | 0.2959                                 |  |
| 10 | 0.0776                      | 0.2501                                 | 0.0614                        | 0.3259                                 |  |
| 15 | 0.1383                      | 0.2954                                 | 0.0925                        | 0.3738                                 |  |
|    | m=30                        |                                        | sample median (m=60)          |                                        |  |

Figure 1: Estimating the mean of vMF( $\mu$ ,  $\kappa = 30$ ) on  $S^2$  with k being the number of outliers and  $\rho$  being the intrinsic distance.



## Results on $S^7$

| k  | $\overline{ ho(\hat{\mu},\mu)}$ | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ |
|----|---------------------------------|-----------------------------|----------------------------------------|-----------------------------|----------------------------------------|
| 0  | 0.0396                          | 0.0399                      | 0.1186                                 | 0.0384                      | 0.2570                                 |
| 10 | 0.0565                          | 0.0541                      | 0.1258                                 | 0.0514                      | 0.2669                                 |
| 20 | 0.0897                          | 0.0900                      | 0.1462                                 | 0.0834                      | 0.2827                                 |
| 40 | 0.1656                          | 0.1678                      | 0.2082                                 | 0.1596                      | 0.3376                                 |
|    | Sample mean (m=1)               | m=10                        |                                        | m=50                        |                                        |

| k  | $\overline{ ho(\mu^*,\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ | $\overline{ ho(\hat{m},\mu)}$ | $\overline{\overline{ ho(\mu_i,\mu)}}$ |
|----|-----------------------------|----------------------------------------|-------------------------------|----------------------------------------|
| 0  | 0.0398                      | 0.3590                                 | 0.0387                        | 0.4896                                 |
| 10 | 0.0469                      | 0.3676                                 | 0.0457                        | 0.4978                                 |
| 20 | 0.0760                      | 0.3896                                 | 0.0682                        | 0.5301                                 |
| 40 | 0.1513                      | 0.5176                                 | 0.1305                        | 0.5987                                 |
|    | m=100                       |                                        | sample median (m=200)         |                                        |

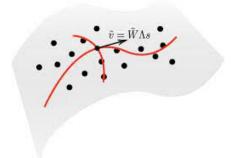
Figure 2: Estimating the mean of vMF( $\mu$ ,  $\kappa = 30$ ) on  $S^7$  with k being the number of outliers and  $\rho$  being the intrinsic distance.



# Principal Geodesic Analysis (PGA)

Principal Geodesic Analysis (Fletcher and Joshi, 2007; Lazar and Lin, 2017):

- Compute the center of the data.
- Successively find some orthogonal tangent vectors at the center so that their exponentiated space best fits the data according to the intrinsic sum of squared residuals.





#### Robust Principal Geodesic Analysis (RPGA):

① Divide the data  $\{X_1,...,X_n\}$  into m groups  $U_1,...,U_m$ , compute the within-group intrinsic mean  $\mu_j$ , and take  $\mu^* = \text{med}(\mu_1,...,\mu_m)$ .



#### Robust Principal Geodesic Analysis (RPGA):

- ① Divide the data  $\{X_1, ..., X_n\}$  into m groups  $U_1, ..., U_m$ , compute the within-group intrinsic mean  $\mu_j$ , and take  $\mu^* = \text{med}(\mu_1, ..., \mu_m)$ .
- ② Calculate  $V_k = \{ \text{vec} \left( \text{Log}_{\mu^*}(X_j) \right) : j \in U_i \}$  and the sample covariance matrix  $\Sigma_k$  of points in  $V_k$  for k = 1, ..., m.



#### Robust Principal Geodesic Analysis (RPGA):

- ① Divide the data  $\{X_1, ..., X_n\}$  into m groups  $U_1, ..., U_m$ , compute the within-group intrinsic mean  $\mu_j$ , and take  $\mu^* = \text{med}(\mu_1, ..., \mu_m)$ .
- ② Calculate  $V_k = \{ \text{vec} \left( \text{Log}_{\mu^*}(X_j) \right) : j \in U_i \}$  and the sample covariance matrix  $\Sigma_k$  of points in  $V_k$  for k = 1, ..., m.
- 6 Compute

$$\widehat{\Sigma} = \text{med}(\Sigma_1, ..., \Sigma_m),$$

where the median is taken with respect to the Frobenius norm  $||A||_F = \text{Tr}(A^T A)$ .



#### Robust Principal Geodesic Analysis (RPGA):

- ① Divide the data  $\{X_1, ..., X_n\}$  into m groups  $U_1, ..., U_m$ , compute the within-group intrinsic mean  $\mu_i$ , and take  $\mu^* = \text{med}(\mu_1, ..., \mu_m)$ .
- ② Calculate  $V_k = \{ \text{vec} \left( \text{Log}_{\mu^*}(X_j) \right) : j \in U_i \}$  and the sample covariance matrix  $\Sigma_k$  of points in  $V_k$  for k = 1, ..., m.
- 6 Compute

$$\widehat{\Sigma} = \operatorname{med}(\Sigma_1, ..., \Sigma_m),$$

where the median is taken with respect to the Frobenius norm  $||A||_F = \text{Tr}(A^T A)$ .

① Compute the eigenvectors of  $\widehat{\Sigma}$ ,  $\{\omega_1, ..., \omega_6\}$ , arranged in order by largest to smallest eigenvalues.



### **RPGA** Results

| k        | PGA    | RPGA   | RPGA   | RPGA   |  |
|----------|--------|--------|--------|--------|--|
| 0        | 0.4206 | 0.4265 | 0.4259 | 0.4320 |  |
| 5        | 0.4529 | 0.4465 | 0.4314 | 0.4342 |  |
| 10       | 0.4541 | 0.4438 | 0.4508 | 0.4374 |  |
| 15       | 0.4540 | 0.4445 | 0.4492 | 0.4442 |  |
| 20       | 0.4527 | 0.4473 | 0.4507 | 0.4496 |  |
| m groups |        | m=5    | m=10   | m=15   |  |
|          |        |        |        |        |  |
| 1.       | DCA    | DDCA   | DDCA   | DDCA   |  |

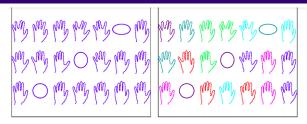
| k  | PGA    | RPGA   | RPGA   | RPGA   |
|----|--------|--------|--------|--------|
| 0  | 0.2629 | 0.2686 | 0.2691 | 0.2751 |
| 5  | 0.2924 | 0.2870 | 0.2803 | 0.2795 |
| 10 | 0.2963 | 0.2838 | 0.2925 | 0.2791 |
| 15 | 0.2994 | 0.2835 | 0.2758 | 0.2850 |
| 20 | 0.3041 | 0.2841 | 0.2889 | 0.2775 |
| m  | groups | m=5    | m=10   | m=15   |

| k              | PGA    | RPGA   | RPGA   | RPGA   |
|----------------|--------|--------|--------|--------|
| 0              | 0.1472 | 0.1497 | 0.1533 | 0.1608 |
| 5              | 0.1919 | 0.1801 | 0.1600 | 0.1588 |
| 10             | 0.2242 | 0.2102 | 0.1940 | 0.1743 |
| 15             | 0.2208 | 0.2149 | 0.2134 | 0.2079 |
| 20             | 0.2305 | 0.2259 | 0.2169 | 0.2206 |
| $\overline{m}$ | groups | m=5    | m=10   | m=15   |

Figure 3: Average mean sum of square residuals to explanatory submanifolds computed with k outliers to data without outliers in PD(3).



# Real-World Application: Hand Shape Data



(A) Hand Shape Data with 3 outliers

(B) m = 7 subsets



(c) Subset means, μ<sub>i</sub>

(D) Sample mean,  $\hat{\mu}$  and geometric median,  $\mu^*$ 

Figure 4: Median-of-means on hand shape data.

# Thank you!





## Reference I

- N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. *Journal of Computer and system sciences*, 58(1):137–147, 1999.
- S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711–7717, 2013.
- O. Catoni. Challenging the empirical mean and empirical variance: a deviation study. In *Annales de l'IHP Probabilités et statistiques*, volume 48, pages 1148–1185, 2012.
- O. Catoni and I. Giulini. Dimension-free pac-bayesian bounds for the estimation of the mean of a random vector. arXiv preprint arXiv:1802.04308, 2018.
- L. Devroye, M. Lerasle, G. Lugosi, and R. I. Oliveira. Sub-gaussian mean estimators. The Annals of Statistics, 44(6):2695–2725, 2016.
- P. T. Fletcher and S. Joshi. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing, 87(2):250–262, 2007.
- P. T. Fletcher, S. Venkatasubramanian, and S. Joshi. Robust statistics on riemannian manifolds via the geometric median. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.
- P. J. Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.
- M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from a uniform distribution. *Theoretical computer science*, 43:169–188, 1986.
- D. Lazar and L. Lin. Scale and curvature effects in principal geodesic analysis. *Journal of Multivariate Analysis*, 153:64–82, 2017.
- M. Lerasle and R. I. Oliveira. Robust empirical mean estimators. arXiv preprint arXiv:1112.3914, 2011.
- L. Lin, D. Lazar, B. Sarpabayeva, and D. B. Dunson. Robust optimization and inference on manifolds. arXiv preprint arXiv:2006.06843, 2020.



## Reference II

- G. Lugosi and S. Mendelson. Mean estimation and regression under heavy-tailed distributions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019a.
- G. Lugosi and S. Mendelson. Sub-gaussian estimators of the mean of a random vector. The annals of statistics, 47(2):783–794, 2019b.
- S. Minsker. Geometric median and robust estimation in banach spaces. *Bernoulli*, 21(4):2308–2335, 2015.
- A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.
- L. M. Ostresh Jr. On the convergence of a class of iterative methods for solving the weber location problem. Operations Research, 26(4):597–609, 1978.
- D. Rodriguez and M. Valdora. The breakdown point of the median of means tournament. *Statistics & Probability Letters*, 153:108–112, 2019.
- J. W. Tukey and D. H. McLaughlin. Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/winsorization 1. Sankhyā: The Indian Journal of Statistics, Series A, pages 331–352, 1963.
- E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, First Series, 43:355–386, 1937.
- Y. Zhang and Y.-C. Chen. The em perspective of directional mean shift algorithm. arXiv preprint arXiv:2101.10058, 2021.



## Median-of-Means Tournaments

Given an i.i.d. sample  $\{X_1,...,X_n\} \subset \mathbb{R}^d$ , we partition it into m groups  $U_1,...,U_m$  and compute the within-group means  $\mathbf{Z}_i = \frac{1}{|U_i|} \sum_{i \in U_i} \mathbf{X}_j$ .

For each  $a \in \mathbb{R}^d$ , let

$$T_{\pmb{a}} = \left\{ \pmb{x} \in \mathbb{R}^d : \exists \textit{J} \subset \{1,...,m\} \text{ with } |\textit{J}| \geq m/2 \text{ such that for all } \textit{j} \in \textit{J}, \left|\left|\pmb{Z}_{\textit{j}} - \pmb{x}\right|\right| \leq \left|\left|\pmb{Z}_{\textit{j}} - \pmb{a}\right|\right| \right\}$$

and define the "median-of-means tournaments" estimator by

$$\widehat{\boldsymbol{\mu}}_n \in \operatorname*{arg\,min}_{\boldsymbol{a} \in \mathbb{R}^d} \operatorname{radius}(T_{\boldsymbol{a}}),$$

where radius( $T_a$ ) = sup<sub> $x \in T_a$ </sub> ||x - a||.

## Theorem (Lugosi and Mendelson 2019b)

Let  $\delta \in (0,1)$  and  $k = \lceil 200 \log(2/\delta) \rceil$ . If  $X_1, ..., X_n$  are i.i.d. random vectors in  $\mathbb{R}^d$  with mean  $\mu \in \mathbb{R}^d$  and covariance matrix  $\Sigma$ , then for all n,

$$||\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}|| \leq \max \left\{ 960 \sqrt{\frac{Tr(\Sigma)}{n}}, 240 \sqrt{\frac{\lambda_{\max} \log(2/\delta)}{n}} \right\}$$

with probability at least  $(1 - \delta)$ , where  $\lambda_{\max}$  is the maximal eigenvalue of  $\Sigma$ .