A Family of Density-Scaled Filtered Complexes

Paper Author: Abigail Hickok

Presented By Yikun Zhang

Department of Statistics, University of Washington

May 28, 2024

W UNIVERSITY of WASHINGTON

Introduction

Nowadays, high-dimensional point cloud data are ubiquitous.

Figure 1: Images with many pixels (Tenenbaum et al., 2000).

Nowadays, high-dimensional point cloud data are ubiquitous.

Figure 1: Images with many pixels (Tenenbaum et al., 2000).

► **Challenges:** Analyzing high-dimensional data is statistically and computationally challenging.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

► Manifold Hypothesis (Fefferman et al., 2016):

High-dimensional data tend to lie in the vicinity of a low dimensional manifold.

Figure 2: Two-dimensional parameterization of images (Tenenbaum et al., 2000).

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

► **Goal:** Infer the homology of the underlying manifold *M* around which the point cloud $X = {x_i}_{i=1}^N$ lie.

¹A simple example of a Calabi–Yau manifold is given by $x^2 + y^2 + z^2 + w^2 = 0$ with (x, y, z, w) from the complex projective 3-space.

► **Goal:** Infer the homology of the underlying manifold *M* around which the point cloud $X = {x_i}_{i=1}^N$ lie.

• It can distinguish *M* from other manifolds with different homology.

(a) Data around a two dimensional torus (Fefferman et al., 2016).

(b) Data around the 3D projection of the Calabi-Yau manifold¹(Yao et al., 2023).

¹A simple example of a Calabi–Yau manifold is given by $x^2 + y^2 + z^2 + w^2 = 0$ with (x, y, z, w) from the complex projective 3-space.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

■ Approximate *M* through a *filtered complex*, which is a collection of simplicial complexes $\{\mathcal{K}_r\}_{r\in\mathbb{R}}$ such that $\mathcal{K}_s \subseteq \mathcal{K}_r$ for all $s \leq r$.

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

- Approximate *M* through a *filtered complex*, which is a collection of simplicial complexes $\{\mathcal{K}_r\}_{r \in \mathbb{R}}$ such that $\mathcal{K}_s \subseteq \mathcal{K}_r$ for all $s \leq r$.
 - *Čech Complex* $\check{C}(X) \equiv \check{C}(M, d, X)$: The set of simplices in $\check{C}(M, d, X)_r$ at filtration level *r* is

$$\left\{x_J:\bigcap_{j\in J}B(x_j,r)\neq\emptyset\text{ and }J\subseteq\{1,...,N\}\right\},$$

where (M, d) is a metric space, x_I denotes the simplex with vertices x_j for all $j \in J$, and $B(x, r) := \{y \in M : d(x, y) \le r\}$.

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

- Approximate *M* through a *filtered complex*, which is a collection of simplicial complexes $\{\mathcal{K}_r\}_{r \in \mathbb{R}}$ such that $\mathcal{K}_s \subseteq \mathcal{K}_r$ for all $s \leq r$.
 - *Čech Complex* $\check{C}(X) \equiv \check{C}(M, d, X)$: The set of simplices in $\check{C}(M, d, X)_r$ at filtration level *r* is

$$\left\{x_J:\bigcap_{j\in J}B(x_j,r)\neq\emptyset\text{ and }J\subseteq\{1,...,N\}\right\},$$

where (M, d) is a metric space, x_I denotes the simplex with vertices x_j for all $j \in J$, and $B(x, r) := \{y \in M : d(x, y) \le r\}$.

• *Vietoris-Rips Complex VR*(*X*) = *VR*(*M*, *d*, *X*): The set of simplices in *VR*(*M*, *d*, *X*)_{*r*} at filtration level *r* is

$$\left\{x_J: d(x_i, x_j) \le 2r \text{ for all } i, j \in J \text{ and } J \subseteq \{1, ..., N\}\right\}.$$

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = \{x_i\}_{i=1}^N$?

Onstruct the *persistent homology* $H(\check{C}(X))$ of the \check{C} ech complex.

²Loosely speaking, it is *k*-dimensional hole with $k \le n$.

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

② Construct the *persistent homology* $H(\check{C}(X))$ of the \check{C} ech complex.

Summarize $H(\check{C}(X))$ by a *persistent diagram*, which is a multiset of points in $[0, \infty]^2$ that records the birth and death of each homology class ².

²Loosely speaking, it is *k*-dimensional hole with $k \le n$.

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

② Construct the *persistent homology* $H(\check{C}(X))$ of the \check{C} ech complex.

Summarize $H(\check{C}(X))$ by a *persistent diagram*, which is a multiset of points in $[0, \infty]^2$ that records the birth and death of each homology class ².

Theorem (Nerve Theorem in Borsuk 1948)

If $\bigcap_{j \in J} B(x_j, r)$ is either contractible or empty for all $J \subseteq \{1, ..., N\}$, then $\check{C}(M, d, X)_r$ is homotopy-equivalent to $\bigcap_{i=1}^N B(x_i, r)$.

²Loosely speaking, it is *k*-dimensional hole with $k \le n$.

▶ **Question:** How can infer the homology of a manifold *M* with dimension *n* from the point cloud $X = {x_i}_{i=1}^N$?

② Construct the *persistent homology* $H(\check{C}(X))$ of the \check{C} ech complex.

Summarize $H(\check{C}(X))$ by a *persistent diagram*, which is a multiset of points in $[0, \infty]^2$ that records the birth and death of each homology class ².

Theorem (Nerve Theorem in Borsuk 1948)

If $\bigcap_{j \in J} B(x_j, r)$ is either contractible or empty for all $J \subseteq \{1, ..., N\}$, then $\check{C}(M, d, X)_r$ is homotopy-equivalent to $\bigcap_{i=1}^N B(x_i, r)$.

► **Caveat:** On a general Riemannian manifold, $\bigcap_{j \in J} B(x_j, r)$ is contractible only when *r* is sufficiently small.

²Loosely speaking, it is *k*-dimensional hole with $k \leq n$.

W Motivating Example: Two Circle With Different Radii

► **Conventional Wisdom:** Homology classes with the long lifetimes are true topological features, while those with the short lifetimes are noises.

Motivating Example: Two Circle With Different Radii

► **Conventional Wisdom:** Homology classes with the long lifetimes are true topological features, while those with the short lifetimes are noises.

The smaller circle has a homology class with a much shorter lifetime, but both homology classes are true topological features!!

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

Drawbacks of Standard Distance-based Filtered Complexes

Proposition (Proposition 3.1 in Niyogi et al. 2008)

Let the closure of

$$\{x \in \mathbb{R}^m : \exists \text{ distinct } y, z \in M \text{ s.t. } d(x, M) = d(x, y) = d(x, z)\}$$

be the **medial axis** of a submanifold M in \mathbb{R}^m and $\sigma(x)$ be the distance from $x \in M$ to the medial axis. Denote the **condition number** of M by $1/\tau$, where

$$\tau = \inf_{x \in M} \sigma(x).$$

Then, $\check{C}(X)_r$ *is homotopy-equivalent to* M *when* $r < \sqrt{\frac{3}{5}} \tau$ *and* X *is sufficiently dense in* M.

Drawbacks of Standard Distance-based Filtered Complexes

Proposition (Proposition 3.1 in Niyogi et al. 2008)

Let the closure of

$$\{x \in \mathbb{R}^m : \exists \text{ distinct } y, z \in M \text{ s.t. } d(x, M) = d(x, y) = d(x, z)\}$$

be the **medial axis** of a submanifold M in \mathbb{R}^m and $\sigma(x)$ be the distance from $x \in M$ to the medial axis. Denote the **condition number** of M by $1/\tau$, where

$$\tau = \inf_{x \in M} \sigma(x).$$

Then, $\check{C}(X)_r$ is homotopy-equivalent to M when $r < \sqrt{\frac{3}{5}} \tau$ and X is sufficiently dense in M.

• In the previous two-circle example, *τ* is equal to the radius of each circle when we view them separately.

 \implies Č(*X*) may only be homotopy-equivalent to *M* for a very small range of filtration values *r*.

Yikun Zhang

- (a) The point cloud density that is inversely proportional to the local feature size.
- (b) Persistent diagram of standard Vietoris-Rips complexes.

- (a) The point cloud density that is inversely proportional to the local feature size.
- (b) Persistent diagram of standard Vietoris-Rips complexes.
- Standard distance-based filtered complexes are not invariant under homeomorphism.

 \implies Their corresponding persistent homology is not topologically invariant.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

► **Key Insight:** Modify the metric *g* to construct a family of "density-scaled filtered complexes".

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

► **Key Insight:** Modify the metric *g* to construct a family of "density-scaled filtered complexes".

• Define a conformally equivalent metric $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log\log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

► **Key Insight:** Modify the metric *g* to construct a family of "density-scaled filtered complexes".

• Define a conformally equivalent metric $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log \log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

 \widetilde{g} helps shrink the distances between points in sparse regions of the manifold and enlarge the distances in dense regions.

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

► **Key Insight:** Modify the metric *g* to construct a family of "density-scaled filtered complexes".

• Define a conformally equivalent metric $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log\log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

 \widetilde{g} helps shrink the distances between points in sparse regions of the manifold and enlarge the distances in dense regions.

• The density-scaled Čech complex is homotopy-equivalent to *M* for filtration values in (r_1, r_2) with $r_1 \rightarrow 0, r_2 \rightarrow \infty$ in probability as $N \rightarrow \infty$ and is invariant under conformal transformations.

Methodology and **Theoretical Properties**

k-*Nearest Neighbor Filtration:* At filtration level *k*, the set of simplices is

 $\left\{x_{J}: \left|\left|x_{i}-x_{j}\right|\right| \leq \left|\left|x_{i}-x_{N_{i}^{k}}\right|\right| \text{ or } \left|\left|x_{j}-x_{N_{j}^{k}}\right|\right| \text{ for all } i, j \in J \text{ and all } J \subseteq \{1, ..., N\}\right\},$

where N_i^k is the index of the *k*-th nearest neighbor of x_i .

• Fail in regions that are close in Euclidean but far in Riemannian distance.

k-Nearest Neighbor Filtration: At filtration level *k*, the set of simplices is

 $\left\{x_{J}: \left|\left|x_{i}-x_{j}\right|\right| \leq \left|\left|x_{i}-x_{N_{i}^{k}}\right|\right| \text{ or } \left|\left|x_{j}-x_{N_{j}^{k}}\right|\right| \text{ for all } i, j \in J \text{ and all } J \subseteq \{1, ..., N\}\right\},$

where N_i^k is the index of the *k*-th nearest neighbor of x_i .

- Fail in regions that are close in Euclidean but far in Riemannian distance.
- However, the modified continuous kNN graph (Berry and Sauer, 2019) induced a similar density-scaled metric $\sqrt[n]{f^2} \cdot g$.

k-Nearest Neighbor Filtration: At filtration level *k*, the set of simplices is

 $\left\{x_{J}: \left|\left|x_{i}-x_{j}\right|\right| \leq \left|\left|x_{i}-x_{N_{i}^{k}}\right|\right| \text{ or } \left|\left|x_{j}-x_{N_{j}^{k}}\right|\right| \text{ for all } i, j \in J \text{ and all } J \subseteq \{1, ..., N\}\right\},$

where N_i^k is the index of the *k*-th nearest neighbor of x_i .

- Fail in regions that are close in Euclidean but far in Riemannian distance.
- However, the modified continuous kNN graph (Berry and Sauer, 2019) induced a similar density-scaled metric $\sqrt[n]{f^2} \cdot g$.
- ⊘ *Fermat Distance:* Fernández et al. (2023) considered a different density-scaled metric $\frac{1}{\sqrt[n]{f^{2(p-1)}}} \cdot g$ for some parameter p > 1.
 - It did the opposite as what this paper proposed.

k-Nearest Neighbor Filtration: At filtration level *k*, the set of simplices is

 $\left\{x_{J}: \left|\left|x_{i}-x_{j}\right|\right| \leq \left|\left|x_{i}-x_{N_{i}^{k}}\right|\right| \text{ or } \left|\left|x_{j}-x_{N_{j}^{k}}\right|\right| \text{ for all } i, j \in J \text{ and all } J \subseteq \{1, ..., N\}\right\},$

where N_i^k is the index of the *k*-th nearest neighbor of x_i .

- Fail in regions that are close in Euclidean but far in Riemannian distance.
- However, the modified continuous kNN graph (Berry and Sauer, 2019) induced a similar density-scaled metric $\sqrt[n]{f^2} \cdot g$.
- ⊘ *Fermat Distance:* Fernández et al. (2023) considered a different density-scaled metric $\frac{1}{\sqrt[n]{f^{2(p-1)}}} \cdot g$ for some parameter p > 1.
 - It did the opposite as what this paper proposed.
- Other Density-Weighted Complex: Define the radius of a ball at point *x* as $r_x(t) := \frac{t}{\sqrt[n]{n(N) \cdot f(x)}}$ of a given filtration parameter *t*.
 - The proposed density-scaled complexes are more robust than the above density-weighted complexes.

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

• Recall that the density-scaled Riemannian metric is $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log\log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

• Recall that the density-scaled Riemannian metric is $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log \log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

• The uniform probability measure on (M, \tilde{g}) is $\mathbb{P}(A) = \int_A \frac{1}{\tilde{\mu}(M)} d\tilde{V}$ for any Borel set $A \subseteq M$, where

$$d\widetilde{V} = \sqrt{|\widetilde{g}|} \, dx^1 \wedge \dots \wedge dx^n = \alpha(N) f \sqrt{|g|} \, dx^1 \wedge \dots \wedge dx^n = \alpha(N) f \, dV$$

is the volume form on (M,\widetilde{g}) and $\widetilde{\mu}(M)$ is the volume of (M,\widetilde{g}) .

$$\implies \frac{1}{\widetilde{\mu}(M)} d\widetilde{V} = f \, dV.$$

Let (M, g) be an *n*-dimensional Riemannian manifold and $X = \{x_i\}_{i=1}^N$ be points sampled from a smooth density function $f : M \to (0, \infty)$.

• Recall that the density-scaled Riemannian metric is $\tilde{g} := \sqrt[n]{f^2 \alpha(N)^2} \cdot g$, where

$$\alpha(N) := \begin{cases} \frac{N}{(\log N + (n-1)\log \log N)\log N}, & N > 1, \\ 1, & N = 1. \end{cases}$$

• The uniform probability measure on (M, \tilde{g}) is $\mathbb{P}(A) = \int_A \frac{1}{\tilde{\mu}(M)} d\tilde{V}$ for any Borel set $A \subseteq M$, where

$$d\widetilde{V} = \sqrt{|\widetilde{g}|} dx^1 \wedge \dots \wedge dx^n = \alpha(N) f \sqrt{|g|} dx^1 \wedge \dots \wedge dx^n = \alpha(N) f dV$$

is the volume form on (M, \widetilde{g}) and $\widetilde{\mu}(M)$ is the volume of (M, \widetilde{g}) .

$$\implies \frac{1}{\widetilde{\mu}(M)} d\widetilde{V} = f dV.$$

Sampling points from (M, g) with probability density function f is equivalent to sampling points uniformly at random from $(M, \tilde{g})!!$

Yikun Zhang

• The *density-scaled* Čech complex is defined as:

$$D\check{C}(M,g,f,X) := \check{C}(M,d_{M,\widetilde{g}},X).$$

 \iff The set of simplices in $D\check{C}(M, g, f, X)_r$ at filtration level *r* is

$$\left\{x_J:\bigcap_{j\in J}B(x_j,r)\neq\emptyset\text{ and }J\subseteq\{1,...,N\}\right\} \text{ with } B(x,r):=\left\{y\in M:d_{M,\widetilde{g}}(x,y)\leq r\right\}.$$

• The *density-scaled* Čech complex is defined as:

$$D\check{C}(M,g,f,X) := \check{C}(M,d_{M,\widetilde{g}},X).$$

 \iff The set of simplices in $D\check{C}(M, g, f, X)_r$ at filtration level *r* is

$$\left\{x_{J}:\bigcap_{j\in J}B(x_{j},r)\neq\emptyset\text{ and }J\subseteq\{1,...,N\}\right\} \text{ with }B(x,r):=\left\{y\in M:d_{M,\widetilde{g}}(x,y)\leq r\right\}.$$

• The *density-scaled Vietoris-Rips complex* is defined as:

$$DVR(M,g,f,X) := VR(M,d_{M,\widetilde{g}},X).$$

 \iff The set of simplices in $DVR(M, g, f, X)_r$ at filtration level *r* is

 $\left\{x_J: d_{M,\widetilde{g}}(x_i, x_j) \leq 2r \text{ for all } i, j \in J \text{ and } J \subseteq \{1, ..., N\}\right\}.$

► **Notes:** More generally, one can define a density-scaled version of any filtered complex via $d_{M,\tilde{g}}$.

Yikun Zhang

W Convergence Property of Density-Scaled Filtered Complex

- The *convexity radius* of a Riemannian manifold (M, g) is $r^{\text{convex}} := \sup \{r : B(x, s) \text{ is geodesically convex for all } x \in M \text{ and all } 0 \le s < r\},$ where $B(x, s) := \{y \in M : d_{M,g}(x, y) \le r\}.$
- Let r_N^{convex} be the convexity radius of (M, \tilde{g}_N) , where \tilde{g}_N denotes the density-scaled Riemannian metric with *N* points.
W Convergence Property of Density-Scaled Filtered Complex

- The *convexity radius* of a Riemannian manifold (M, g) is $r^{\text{convex}} := \sup \{r : B(x, s) \text{ is geodesically convex for all } x \in M \text{ and all } 0 \le s < r\},$ where $B(x, s) := \{y \in M : d_{M,g}(x, y) \le r\}.$
- Let r_N^{convex} be the convexity radius of (M, \tilde{g}_N) , where \tilde{g}_N denotes the density-scaled Riemannian metric with N points.
- The *coverage radius* of a point cloud X on (M, g) is defined as:

$$r^{\text{cover}} := \inf \left\{ r : M \subseteq \bigcup_{x \in X} B(x, r) \right\}.$$

• Let r_N^{cover} be the coverage radius of a point cloud *X* on (M, \tilde{g}_N) .

W Convergence Property of Density-Scaled Filtered Complex

- The *convexity radius* of a Riemannian manifold (M, g) is $r^{\text{convex}} := \sup \{r : B(x, s) \text{ is geodesically convex for all } x \in M \text{ and all } 0 \le s < r\},$ where $B(x, s) := \{y \in M : d_{M,g}(x, y) \le r\}.$
- Let r_N^{convex} be the convexity radius of (M, \tilde{g}_N) , where \tilde{g}_N denotes the density-scaled Riemannian metric with N points.
- The *coverage radius* of a point cloud X on (M, g) is defined as:

$$r^{\operatorname{cover}} := \inf \left\{ r : M \subseteq \bigcup_{x \in X} B(x, r) \right\}.$$

• Let r_N^{cover} be the coverage radius of a point cloud *X* on (M, \tilde{g}_N) .

Theorem (Theorem 3 in Hickok 2021)

If $r_N^{cover} < r < r_N^{convex}$, then $D\check{C}(M, g, f, X)$ is homotopy-equivalent to M.

- If M is compact, then $r_N^{convex} \to \infty$ as $N \to \infty$.
- If M is compact and connected, then $r_N^{cover} \xrightarrow{P} 0$ as $N \to \infty$.

W Conformal Invariance of Density-Scaled Filtered Complex

- Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds.
- Let $F : (M_2, g_2) \rightarrow (M_1, g_1)$ be a conformal transformation (or specifically, a diffeomorphism).
- Let $f_1 : M_1 \to (0, \infty)$ be a smooth density function.

W Conformal Invariance of Density-Scaled Filtered Complex

- Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds.
- Let $F : (M_2, g_2) \rightarrow (M_1, g_1)$ be a conformal transformation (or specifically, a diffeomorphism).
- Let $f_1 : M_1 \to (0, \infty)$ be a smooth density function.
- The function $f_2 : M_2 \to (0, \infty)$ is the *pullback* of f_1 under *F*, *i.e.*, $f_2 dV_2 = F^*(f_1 dV_1)$.

Sampling a point cloud Y from f_2 is equivalent to sampling a point cloud X from f_1 and setting $Y = F^{-1}(X)$.

W Conformal Invariance of Density-Scaled Filtered Complex

- Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds.
- Let $F : (M_2, g_2) \rightarrow (M_1, g_1)$ be a conformal transformation (or specifically, a diffeomorphism).
- Let $f_1 : M_1 \to (0, \infty)$ be a smooth density function.
- The function $f_2 : M_2 \to (0, \infty)$ is the *pullback* of f_1 under *F*, *i.e.*, $f_2 dV_2 = F^*(f_1 dV_1)$.

Sampling a point cloud Y from f_2 is equivalent to sampling a point cloud X from f_1 and setting $Y = F^{-1}(X)$.

Theorem (Theorem 5 in Hickok 2021)

Let $\Sigma(M, d, X)$ be a distance-based filtered complex that is invariant under global isometry. Then, the density-scaled filtered complex $D\Sigma$ is invariant under all conformal transformations.

• $D\Sigma(M_1, g_1, f_1, X)$ is isomorphic to $D\Sigma(M_2, g_2, f_2, F^{-1}(X))$.

Estimate *f* by kernel density estimation on Riemannian manifold (Pelletier, 2005; Ozakin and Gray, 2009):

$$\widehat{f}_N(y) := rac{1}{N} \sum_{x \in X} rac{1}{h_N^n} K\left(rac{||y-x||}{h_N}
ight),$$

where $K : \mathbb{R} \to [0, \infty)$ is a kernel function such that

$$K(-x) = K(x), \ \int_{||z|| \le 1} K(||z||) \ d^n z = 1, \ \text{and} \ K(x) = 0 \ \text{for} \ x \notin (-1, 1).$$

Estimate *f* by kernel density estimation on Riemannian manifold (Pelletier, 2005; Ozakin and Gray, 2009):

$$\widehat{f}_N(y) := rac{1}{N} \sum_{x \in X} rac{1}{h_N^n} K\left(rac{||y-x||}{h_N}
ight),$$

where $K : \mathbb{R} \to [0, \infty)$ is a kernel function such that

$$K(-x) = K(x), \ \int_{||z|| \le 1} K(||z||) \ d^n z = 1, \text{ and } K(x) = 0 \text{ for } x \notin (-1, 1).$$

The default kernel in this paper is the biweight kernel

$$K(x) = \frac{\bar{K}(x)}{|\mathbb{S}^{n-1}| \int_0^1 \bar{K}(r) r^{n-1} dr} \quad \text{with} \quad \bar{K}(x) := \frac{15}{16} (1 - x^2)^2 \mathbb{1}_{\{x \in (-1,1)\}}.$$

Estimate *f* by kernel density estimation on Riemannian manifold (Pelletier, 2005; Ozakin and Gray, 2009):

$$\widehat{f}_N(y) := rac{1}{N} \sum_{x \in X} rac{1}{h_N^n} K\left(rac{||y-x||}{h_N}
ight),$$

where $K : \mathbb{R} \to [0, \infty)$ is a kernel function such that

$$K(-x) = K(x), \ \int_{||z|| \le 1} K(||z||) \ d^n z = 1, \text{ and } K(x) = 0 \text{ for } x \notin (-1, 1).$$

The default kernel in this paper is the biweight kernel

$$K(x) = \frac{\bar{K}(x)}{|\mathbb{S}^{n-1}| \int_0^1 \bar{K}(r) r^{n-1} dr} \quad \text{with} \quad \bar{K}(x) := \frac{15}{16} (1-x^2)^2 \mathbb{1}_{\{x \in (-1,1)\}}.$$

• The bandwidth parameter is chosen as $h_N = N^{-\frac{1}{n+4}}$ in this paper, because when $h_N \propto N^{-\frac{1}{n+4}}$,

$$\mathbb{E}\left[\left(\widehat{f}_N(y) - f(y)\right)^2\right] = O\left(N^{-\frac{4}{n+4}}\right) \text{ is optimal.}$$

Estimate *f* by kernel density estimation on Riemannian manifold (Pelletier, 2005; Ozakin and Gray, 2009):

$$\widehat{f}_N(y) := rac{1}{N} \sum_{x \in X} rac{1}{h_N^n} K\left(rac{||y-x||}{h_N}
ight),$$

where $K : \mathbb{R} \to [0, \infty)$ is a kernel function such that

$$K(-x) = K(x), \ \int_{||z|| \le 1} K(||z||) \ d^n z = 1, \text{ and } K(x) = 0 \text{ for } x \notin (-1, 1).$$

The default kernel in this paper is the biweight kernel

$$K(x) = \frac{\bar{K}(x)}{|\mathbb{S}^{n-1}| \int_0^1 \bar{K}(r) r^{n-1} dr} \quad \text{with} \quad \bar{K}(x) := \frac{15}{16} (1 - x^2)^2 \mathbb{1}_{\{x \in (-1,1)\}}.$$

• The bandwidth parameter is chosen as $h_N = N^{-\frac{1}{n+4}}$ in this paper, because when $h_N \propto N^{-\frac{1}{n+4}}$,

$$\mathbb{E}\left[\left(\widehat{f}_N(y) - f(y)\right)^2\right] = O\left(N^{-\frac{4}{n+4}}\right) \text{ is optimal.}$$

• Require prior knowledge of the manifold dimension *n*.

Yikun Zhang

Estimate the Riemannian distance $d_{M,\tilde{g}}$ as follows:

³Choose *k* to be the first *k* for which the number of connected components in $G_{k'NN}(X)$ is equal to those in $G_{kNN}(X)$ for all $k' \in \{k - 5, ..., k\}$.

Estimate the Riemannian distance $d_{M,\tilde{g}}$ as follows:

• Construct the *k*-nearest neighbor³ graph $G_{kNN}(X)$.

³Choose *k* to be the first *k* for which the number of connected components in $G_{k'NN}(X)$ is equal to those in $G_{kNN}(X)$ for all $k' \in \{k - 5, ..., k\}$.

Estimate the Riemannian distance $d_{M,\tilde{g}}$ as follows:

- Construct the *k*-nearest neighbor³ graph $G_{kNN}(X)$.
- ② Define the weight of an edge (x_i, x_j) ∈ $G_{kNN}(X)$ to

$$w(x_i, x_j) := \sqrt[n]{lpha(N) \max\left\{\widehat{f}_N(x_i), \widehat{f}_N(x_j)
ight\}} \left|\left|x_i - x_j\right|\right|.$$

³Choose *k* to be the first *k* for which the number of connected components in $G_{k'NN}(X)$ is equal to those in $G_{kNN}(X)$ for all $k' \in \{k - 5, ..., k\}$.

Estimate the Riemannian distance $d_{M,\tilde{g}}$ as follows:

- Construct the *k*-nearest neighbor³ graph $G_{kNN}(X)$.
- ② Define the weight of an edge (x_i, x_j) ∈ $G_{kNN}(X)$ to

$$w(x_i, x_j) := \sqrt[n]{lpha(N) \max\left\{\widehat{f}_N(x_i), \widehat{f}_N(x_j)
ight\}} \left|\left|x_i - x_j\right|\right|.$$

So The estimate $\widehat{d_{M,\widetilde{g}}}(x_i, x_j)$ is the length of the shortest weighted path in $G_{kNN}(X)$ from x_i to x_j . Set $\widehat{d_{M,\widetilde{g}}}(x_i, x_j) = \infty$ if x_i, x_j are not connected.

The approximate density-scaled Vietoris-Rips complex $\widehat{DVR}(n, k, X)$ at filtration level *t* is

$$\left\{x_J: \widehat{d_{M,\widetilde{g}}}(x_i, x_j) \leq 2t \text{ for all } i, j \in J \text{ and all } J \subseteq \{1, ..., N\}\right\}.$$

³Choose *k* to be the first *k* for which the number of connected components in $G_{k'NN}(X)$ is equal to those in $G_{kNN}(X)$ for all $k' \in \{k - 5, ..., k\}$.

Experimental Results

A Family of Density-Scaled Filtered Complexes

Two-Circle of Different Radii

- Sample $X = \{x_i\}_{i=1}^{500}$ points from two disjoint circles C_1 and C_2 of radii $R_1 = 1$ and $R_2 = 5$, respectively.
- The density function is given by $f(x) = \begin{cases} \frac{1}{4\pi R_1}, & x \in C_1, \\ \frac{1}{4\pi R_2}, & x \in C_2. \end{cases}$

W Two-Circle of Different Radii

- Sample $X = \{x_i\}_{i=1}^{500}$ points from two disjoint circles C_1 and C_2 of radii $R_1 = 1$ and $R_2 = 5$, respectively.
- The density function is given by $f(x) = \begin{cases} \frac{1}{4\pi R_1}, & x \in C_1, \\ \frac{1}{4\pi R_2}, & x \in C_2. \end{cases}$

(a) Persistent diagram for H(VR(X)).

(b) Persistent diagram of $H(\widehat{DVR}(X))$.

Yikun Zhang

W Number of Connected Components in $G_{kNN}(X)$

Figure 6: The number of connected components in $G_{kNN}(X)$ for the two-circle point cloud example. For $k \in \{5, ..., 74\}$, the number of components is the true value 2.

Yikun Zhang

Table 1: Comparison of Kernel Functions and k Values

k	Kernel function	Lifetime of second-most persistent 1D homology class Lifetime of most-persistent 1D homology class	Number of infinite 0D homology classes
10	Biweight	.659	2
10	Epanechnikov	.604	2
10	Triweight	.678	2
5	Biweight	.011	2
15	Biweight	.442	2

- The triweight kernel with k = 10 yields the highest ratio (0.678), slightly higher than the ratio for the biweight kernel with k = 10.
- The biweight kernel with k = 5 leads to very poor results (a ratio of 0.011), because k = 5 is too low for all of the adjacent points in X on the largest circle to be connected by an edge in $G_{kNN}(X)$.

Cassini Curve

• Sample $X = \{x_i\}_{i=1}^{200}$ points from a Cassini curve

$$r^4 - 2r^2\cos(2\theta) = e^4 - 1,$$

where e = 1.01 is the eccentricity and $\theta \sim \text{Uniform}[0, 2\pi)$.

Cassini Curve

• Sample $X = \{x_i\}_{i=1}^{200}$ points from a Cassini curve

$$r^4 - 2r^2\cos(2\theta) = e^4 - 1,$$

where e = 1.01 is the eccentricity and $\theta \sim \text{Uniform}[0, 2\pi)$.

W Point Cloud With Outliers

 Sample 200 points uniformly at random from S¹ and 20 points⁴ uniformly from the square [−1, 1]².

⁴In the paper, the author only sampled 10 outliers from $[-1, 1]^2$.

W Point Cloud With Outliers

 Sample 200 points uniformly at random from S¹ and 20 points⁴ uniformly from the square [−1, 1]².

(a) Persistent diagram for H(VR(X)).

⁴In the paper, the author only sampled 10 outliers from $[-1, 1]^2$.

A Family of Density-Scaled Filtered Complexes

V Extension: Point Cloud Near the Manifold

• Sample 220 points uniformly at random from \mathbb{S}^1 with radial noises $\mathcal{N}(0,0.2^2).$

Extension: Point Cloud Near the Manifold

• Sample 220 points uniformly at random from \mathbb{S}^1 with radial noises $\mathcal{N}(0, 0.2^2)$.

(a) Persistent diagram for H(VR(X)).

(b) Persistent diagram of $H(\widehat{DVR}(X))$.

V Extension: Point Cloud Near the Manifold

• Sample 220 points uniformly at random from \mathbb{S}^1 with radial noises $\mathcal{N}(0, 0.2^2)$.

Figure 9: The weighted kNN graph $G_{kNN}(X)$ with k = 9.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

Application: Clustering

► **Goal:** Use DVR to identify the number of clusters in a point cloud when clusters have different densities.

• Sample N = 200 points from the union of squares $[0, 1]^2$ and $[1.5, 2.5] \times [0, 1]$.

Application: Clustering

► **Goal:** Use \widehat{DVR} to identify the number of clusters in a point cloud when clusters have different densities.

• Sample N = 200 points from the union of squares $[0, 1]^2$ and $[1.5, 2.5] \times [0, 1]$.

(a) Persistent diagram for H(VR(X)).

(b) Persistent diagram of $H(\widehat{DVR}(X))$.

W Application: Lorenz System

• Apply \widehat{DVR} to a point cloud generated from the Lorenz dynamical system (Lorenz, 1963):

$$\begin{cases} \frac{dx}{dt} &= \gamma(y-x), \\ \frac{dy}{dt} &= x(\rho-z)-y, \\ \frac{dz}{dt} &= xy-\beta z, \end{cases}$$

where we set $\gamma = 10$, $\rho = 28$, and $\beta = \frac{8}{3}$.

• Set the initial condition to $(x_0, y_0, z_0) = (1, 1, 1)$ and solve the system from t = 0 to t = 50 using SciPy ODE solver (Virtanen et al., 2020).

W Application: Lorenz System

Figure 11: Collection of points $\{(x(t_i), y(t_i), z(t_i))\}_{i=1}^{1000}$ with time steps $t_i = 0.05i$.⁵

⁵In the paper, the point cloud is taken to be a 2-dim time-delay embedding of x(t) with time lag $\tau = 0.05$.

(a) Persistent diagram for H(VR(X)).

(b) Persistent diagram of $H(\widehat{DVR}(X))$.

Discussion

A Family of Density-Scaled Filtered Complexes

► **Summary:** This paper (Hickok, 2021) proposed a family of density-scaled filtered complexes for inferring the homology of a manifold *M*.

► **Summary:** This paper (Hickok, 2021) proposed a family of density-scaled filtered complexes for inferring the homology of a manifold *M*.

► Main Contribution:

- The density-scaled Čech complex is homotopy-equivalent to M for a growing interval of filtration values as $N \to \infty$, regardless of the geometric properties of M.
- The density-scaled filtered complexes are invariant under conformal transformations.
- Introduce a practical algorithm for construct the density-scaled Vietoris-Rips complex \widehat{DVR} .

⁵The bottleneck distance between two diagrams is

 $W_{\infty}\left(\mathrm{dgm}(\mathbb{V}),\mathrm{dgm}(\mathbb{U})\right):=\inf_{\eta}\sup_{x\in\mathrm{dgm}(\mathbb{V})}\left|\left|x-\eta(x)\right|\right|_{\infty},$

and the infimum is taken over all bijections $\eta : dgm(\mathbb{V}) \to dgm(\mathbb{U})$.

Yikun Zhang

Discussion

Stability of \widehat{DVR} : If two point clouds *X*, *Y* are close in Wasserstein distance $W_{inf}(X, Y) := \inf_{\eta: X \to Y} \max_{x \in X} ||x - \eta(x)||$, then the bottleneck distance⁵ between the persistence diagrams of $\widehat{DVR}(n, k, X)$

and $\widehat{DVR}(n, k, Y)$ are close.

Discussion

• The results are stated in $\epsilon - \delta$ language, and we don't know the rate of convergence and its dependence on *N*, *K*, and *n*.

 $W_{\infty}\left(\mathrm{dgm}(\mathbb{V}),\mathrm{dgm}(\mathbb{U})\right) := \inf_{\eta} \sup_{x \in \mathrm{dgm}(\mathbb{V})} \left|\left|x - \eta(x)\right|\right|_{\infty},$

and the infimum is taken over all bijections $\eta : \operatorname{dgm}(\mathbb{V}) \to \operatorname{dgm}(\mathbb{U})$.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes

⁵The bottleneck distance between two diagrams is

W Discussion

- **Stability of** \widehat{DVR} : If two point clouds *X*, *Y* are close in Wasserstein distance $W_{inf}(X, Y) := \inf_{\eta: X \to Y} \max_{x \in X} ||x \eta(x)||$, then the bottleneck distance⁵ between the persistence diagrams of $\widehat{DVR}(n, k, X)$ and $\widehat{DVR}(n, k, Y)$ are close.
 - The results are stated in $\epsilon \delta$ language, and we don't know the rate of convergence and its dependence on *N*, *K*, and *n*.
- Bandwidth Selection: Other bandwidth selection methods, such as least square cross-validation (Stone, 1984) and plug-in method (Sheather and Jones, 1991), are worth studying.

⁵The bottleneck distance between two diagrams is

 $W_{\infty}\left(\mathrm{dgm}(\mathbb{V}),\mathrm{dgm}(\mathbb{U})\right):=\inf_{\eta}\sup_{x\in\mathrm{dgm}(\mathbb{V})}||x-\eta(x)||_{\infty}\,,$

and the infimum is taken over all bijections $\eta : \operatorname{dgm}(\mathbb{V}) \to \operatorname{dgm}(\mathbb{U})$.

Yikun Zhang

A Family of Density-Scaled Filtered Complexes
• **Stability of** \widehat{DVR} : If two point clouds *X*, *Y* are close in Wasserstein distance $W_{inf}(X, Y) := \inf_{n:X \to Y} \max_{x \in X} ||x - \eta(x)||$, then the

- bottleneck distance⁵ between the persistence diagrams of $\widehat{DVR}(n,k,X)$ and $\widehat{DVR}(n,k,Y)$ are close.
 - The results are stated in $\epsilon \delta$ language, and we don't know the rate of convergence and its dependence on *N*, *K*, and *n*.
- Bandwidth Selection: Other bandwidth selection methods, such as least square cross-validation (Stone, 1984) and plug-in method (Sheather and Jones, 1991), are worth studying.
- Somputational Efficiency: Computing \widehat{DVR} requires knowledge of the pairwise Euclidean distances between the points in *X*, which has at least $O(N^2)$ time and space complexity.

⁵The bottleneck distance between two diagrams is

 $W_{\infty}\left(\mathrm{dgm}(\mathbb{V}),\mathrm{dgm}(\mathbb{U})\right) := \inf_{\eta} \sup_{x \in \mathrm{dgm}(\mathbb{V})} ||x - \eta(x)||_{\infty},$

and the infimum is taken over all bijections $\eta : \operatorname{dgm}(\mathbb{V}) \to \operatorname{dgm}(\mathbb{U})$.

Discussion

Thank you!

More details can be found in

Abigail Hickok. A Family of Density-Scaled Filtered Complexes. arXiv preprint, 2021. https://arxiv.org/abs/2112.03334.

A Family of Density-Scaled Filtered Complexes

W Reference

- M. Berger. A panoramic view of Riemannian geometry. Springer, 2003.
- T. Berry and T. Sauer. Consistent manifold representation for topological data analysis. *Foundations of Data Science*, 1(1):1–38, 2019.
- K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta Mathematicae, 35(1):217–234, 1948.
- C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.
- X. Fernández, E. Borghini, G. Mindlin, and P. Groisman. Intrinsic persistent homology via density-based metric learning. *Journal of Machine Learning Research*, 24(75):1–42, 2023.
- L. Flatto and D. J. Newman. Random coverings. Acta Mathematica, 138(none):241 264, 1977.
- A. Hickok. A family of density-scaled filtered complexes. arXiv preprint arXiv:2112.03334, 2021.
- E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130-141, 1963.
- P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. *Discrete & Computational Geometry*, 39:419–441, 2008.
- A. Ozakin and A. Gray. Submanifold density estimation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, *Advances in Neural Information Processing Systems*, volume 22. Curran Associates, Inc., 2009.
- B. Pelletier. Kernel density estimation on riemannian manifolds. Statistics & probability letters, 73(3): 297–304, 2005.
- S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for kernel density estimation. *Journal of the Royal Statistical Society: Series B (Methodological)*, 53(3):683–690, 1991.
- C. J. Stone. An asymptotically optimal window selection rule for kernel density estimates. *The Annals of Statistics*, pages 1285–1297, 1984.

- J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000.
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods*, 17(3):261–272, 2020.
- Z. Yao, J. Su, and B. Li. Manifold fitting: An invitation to statistics. arXiv preprint arXiv:2304.07680, 2023.

Theorem (Theorem 3 in Hickok 2021)

If $r_N^{cover} < r < r_N^{convex}$, then $D\check{C}(M, g, f, X)$ is homotopy-equivalent to M.

- If M is compact, then $r_N^{convex} \to \infty$ as $N \to \infty$.
- If M is compact and connected, then $r_N^{cover} \xrightarrow{P} 0$ as $N \to \infty$.

Proof (Sketch). If $r < r_N^{\text{convex}}$, then the intersection $\bigcap_{j \in J} B(x_j, r)$ is convex for all $J \subseteq \{1, ..., N\}$, so it is either contractible or empty. If $r > r_N^{\text{cover}}$, then $\cup_i B(x_i, r) = M$. Then, apply the Nerve Theorem.

• The convexity radius of a compact manifold is positive; see Chapter 6.5.3 in Berger (2003). Thus, $r_1^{\text{convex}} > 0$, and $r_N^{\text{convex}} = \sqrt[n]{\alpha(N)} \cdot r_1^{\text{convex}}$.

W Proof of the Convergence Property

Theorem (Theorem 3 in Hickok 2021)

If $r_N^{cover} < r < r_N^{convex}$, then $D\check{C}(M, g, f, X)$ is homotopy-equivalent to M.

- If M is compact, then $r_N^{convex} \to \infty$ as $N \to \infty$.
- If M is compact and connected, then $r_N^{cover} \xrightarrow{P} 0$ as $N \to \infty$.

Proof (Continued).

• The convergence of r_N^{cover} is controlled by the *filling factor* $\Lambda := \frac{N\nu_n r^n}{\mu(M)}$. Define

$$\Lambda_N = \log N + (n-1) \log \log N + w(N)$$
 and $r_N = \sqrt[n]{\frac{\alpha(N)\Lambda_N}{N\nu_n}},$

where w(N) is a sequence with $w(N) \to \infty$ and $\frac{w(N)}{\log N} \to 0$ as $N \to \infty$, while v_n is the volume of a Euclidean unit *n*-ball. For any $\epsilon > 0$, $r_N < \epsilon$ when N is sufficiently large, so

$$\mathbb{P}\left(r_N^{\text{convex}} > \epsilon\right) < \mathbb{P}\left(r_N^{\text{cover}} > r_N\right) \to 0 \quad \text{ as } \quad N \to \infty$$

by Theorem 1.1 in Flatto and Newman (1977) and Corollary 1 in Hickok (2021).

Yikun Zhang