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Nowadays, high-dimensional point cloud data are ubiquitous.

Figure 1: Images with many pixels (Tenenbaum et al., 2000).

▶ Challenges: Analyzing high-dimensional data is statistically and
computationally challenging.
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▶ Manifold Hypothesis (Fefferman et al., 2016):

High-dimensional data tend to lie in the vicinity of a low dimensional manifold.

Figure 2: Two-dimensional parameterization of images (Tenenbaum et al., 2000).
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▶ Goal: Infer the homology of the underlying manifold M around
which the point cloud X = {xi}N

i=1 lie.

• It can distinguish M from other manifolds with different homology.

(a) Data around a two dimensional torus
(Fefferman et al., 2016).

(b) Data around the 3D projection of the
Calabi-Yau manifold1(Yao et al., 2023).

1A simple example of a Calabi–Yau manifold is given by

x2 + y2 + z2 + w2 = 0 with (x, y, z,w) from the complex projective 3-space.
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▶ Question: How can infer the homology of a manifold M with
dimension n from the point cloud X = {xi}N

i=1?

1 Approximate M through a filtered complex, which is a collection of
simplicial complexes {Kr}r∈R such that Ks ⊆ Kr for all s ≤ r.

• Čech Complex Č(X) ≡ Č(M, d,X): The set of simplices in Č(M, d,X)r at
filtration level r isxJ :

⋂
j∈J

B(xj, r) ̸= ∅ and J ⊆ {1, ...,N}

 ,

where (M, d) is a metric space, xJ denotes the simplex with vertices xj for
all j ∈ J, and B(x, r) := {y ∈ M : d(x, y) ≤ r}.

• Vietoris-Rips Complex VR(X) = VR(M, d,X): The set of simplices in
VR(M, d,X)r at filtration level r is{

xJ : d(xi, xj) ≤ 2r for all i, j ∈ J and J ⊆ {1, ...,N}
}
.
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▶ Question: How can infer the homology of a manifold M with
dimension n from the point cloud X = {xi}N

i=1?

2 Construct the persistent homology H(Č(X)) of the Čech complex.

3 Summarize H(Č(X)) by a persistent diagram, which is a multiset of
points in [0,∞]2 that records the birth and death of each homology
class 2.

Theorem (Nerve Theorem in Borsuk 1948)
If ∩j∈JB(xj, r) is either contractible or empty for all J ⊆ {1, ...,N}, then
Č(M, d,X)r is homotopy-equivalent to ∩N

i=1B(xi, r).

▶ Caveat: On a general Riemannian manifold, ∩j∈JB(xj, r) is contractible
only when r is sufficiently small.

2Loosely speaking, it is k-dimensional hole with k ≤ n.
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Č(M, d,X)r is homotopy-equivalent to ∩N

i=1B(xi, r).

▶ Caveat: On a general Riemannian manifold, ∩j∈JB(xj, r) is contractible
only when r is sufficiently small.

2Loosely speaking, it is k-dimensional hole with k ≤ n.

Homology Inference on Manifolds

Yikun Zhang A Family of Density-Scaled Filtered Complexes 7/33



▶ Question: How can infer the homology of a manifold M with
dimension n from the point cloud X = {xi}N

i=1?

2 Construct the persistent homology H(Č(X)) of the Čech complex.
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▶ Conventional Wisdom: Homology classes with the long lifetimes are
true topological features, while those with the short lifetimes are noises.

The smaller circle has a homology class with a much shorter lifetime,
but both homology classes are true topological features!!

Motivating Example: Two Circle With Different Radii
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Proposition (Proposition 3.1 in Niyogi et al. 2008)

Let the closure of

{x ∈ Rm : ∃ distinct y, z ∈ M s.t. d(x,M) = d(x, y) = d(x, z)}

be the medial axis of a submanifold M in Rm and σ(x) be the distance from
x ∈ M to the medial axis. Denote the condition number of M by 1/τ , where

τ = inf
x∈M

σ(x).

Then, Č(X)r is homotopy-equivalent to M when r <
√

3
5 τ and X is sufficiently

dense in M.

• In the previous two-circle example, τ is equal to the radius of each
circle when we view them separately.

=⇒ Č(X) may only be homotopy-equivalent to M for a very small
range of filtration values r.

Drawbacks of Standard Distance-based Filtered Complexes
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(a) The point cloud density that is inversely
proportional to the local feature size.
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(b) Persistent diagram of standard
Vietoris-Rips complexes.

• Standard distance-based filtered complexes are not invariant under
homeomorphism.

=⇒ Their corresponding persistent homology is not topologically
invariant.
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Let (M, g) be an n-dimensional Riemannian manifold and X = {xi}N
i=1 be

points sampled from a smooth density function f : M → (0,∞).

▶ Key Insight: Modify the metric g to construct a family of
“density-scaled filtered complexes”.

• Define a conformally equivalent metric g̃ := n
√

f 2α(N)2 · g, where

α(N) :=

{
N

(log N+(n−1) log log N) log N , N > 1,
1, N = 1.

g̃ helps shrink the distances between points in sparse regions of the manifold
and enlarge the distances in dense regions.

• The density-scaled Čech complex is homotopy-equivalent to M for
filtration values in (r1, r2) with r1 → 0, r2 → ∞ in probability as
N → ∞ and is invariant under conformal transformations.

Main Contributions of This Paper
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Methodology and
Theoretical Properties
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1 k-Nearest Neighbor Filtration: At filtration level k, the set of simplices is{
xJ :

∣∣∣∣xi − xj
∣∣∣∣ ≤ ∣∣∣∣∣∣xi − xNk

i

∣∣∣∣∣∣ or
∣∣∣∣∣∣xj − xNk

j

∣∣∣∣∣∣ for all i, j ∈ J and all J ⊆ {1, ...,N}
}
,

where Nk
i is the index of the k-th nearest neighbor of xi.

• Fail in regions that are close in Euclidean but far in Riemannian distance.

• However, the modified continuous kNN graph (Berry and Sauer, 2019)
induced a similar density-scaled metric n

√
f 2 · g.

2 Fermat Distance: Fernández et al. (2023) considered a different
density-scaled metric 1

n
√

f 2(p−1)
· g for some parameter p > 1.

• It did the opposite as what this paper proposed.

3 Density-Weighted Complex: Define the radius of a ball at point x as
rx(t) := t

n
√

α(N)·f (x)
of a given filtration parameter t.

• The proposed density-scaled complexes are more robust than the above
density-weighted complexes.

Related Works

Yikun Zhang A Family of Density-Scaled Filtered Complexes 13/33



1 k-Nearest Neighbor Filtration: At filtration level k, the set of simplices is{
xJ :

∣∣∣∣xi − xj
∣∣∣∣ ≤ ∣∣∣∣∣∣xi − xNk

i

∣∣∣∣∣∣ or
∣∣∣∣∣∣xj − xNk

j

∣∣∣∣∣∣ for all i, j ∈ J and all J ⊆ {1, ...,N}
}
,

where Nk
i is the index of the k-th nearest neighbor of xi.

• Fail in regions that are close in Euclidean but far in Riemannian distance.
• However, the modified continuous kNN graph (Berry and Sauer, 2019)

induced a similar density-scaled metric n
√

f 2 · g.

2 Fermat Distance: Fernández et al. (2023) considered a different
density-scaled metric 1

n
√

f 2(p−1)
· g for some parameter p > 1.

• It did the opposite as what this paper proposed.

3 Density-Weighted Complex: Define the radius of a ball at point x as
rx(t) := t

n
√

α(N)·f (x)
of a given filtration parameter t.

• The proposed density-scaled complexes are more robust than the above
density-weighted complexes.

Related Works

Yikun Zhang A Family of Density-Scaled Filtered Complexes 13/33



1 k-Nearest Neighbor Filtration: At filtration level k, the set of simplices is{
xJ :

∣∣∣∣xi − xj
∣∣∣∣ ≤ ∣∣∣∣∣∣xi − xNk

i

∣∣∣∣∣∣ or
∣∣∣∣∣∣xj − xNk

j

∣∣∣∣∣∣ for all i, j ∈ J and all J ⊆ {1, ...,N}
}
,

where Nk
i is the index of the k-th nearest neighbor of xi.

• Fail in regions that are close in Euclidean but far in Riemannian distance.
• However, the modified continuous kNN graph (Berry and Sauer, 2019)

induced a similar density-scaled metric n
√

f 2 · g.

2 Fermat Distance: Fernández et al. (2023) considered a different
density-scaled metric 1

n
√

f 2(p−1)
· g for some parameter p > 1.

• It did the opposite as what this paper proposed.

3 Density-Weighted Complex: Define the radius of a ball at point x as
rx(t) := t

n
√

α(N)·f (x)
of a given filtration parameter t.

• The proposed density-scaled complexes are more robust than the above
density-weighted complexes.

Related Works

Yikun Zhang A Family of Density-Scaled Filtered Complexes 13/33



1 k-Nearest Neighbor Filtration: At filtration level k, the set of simplices is{
xJ :

∣∣∣∣xi − xj
∣∣∣∣ ≤ ∣∣∣∣∣∣xi − xNk

i

∣∣∣∣∣∣ or
∣∣∣∣∣∣xj − xNk

j

∣∣∣∣∣∣ for all i, j ∈ J and all J ⊆ {1, ...,N}
}
,

where Nk
i is the index of the k-th nearest neighbor of xi.

• Fail in regions that are close in Euclidean but far in Riemannian distance.
• However, the modified continuous kNN graph (Berry and Sauer, 2019)

induced a similar density-scaled metric n
√

f 2 · g.

2 Fermat Distance: Fernández et al. (2023) considered a different
density-scaled metric 1

n
√

f 2(p−1)
· g for some parameter p > 1.

• It did the opposite as what this paper proposed.

3 Density-Weighted Complex: Define the radius of a ball at point x as
rx(t) := t

n
√

α(N)·f (x)
of a given filtration parameter t.

• The proposed density-scaled complexes are more robust than the above
density-weighted complexes.

Related Works

Yikun Zhang A Family of Density-Scaled Filtered Complexes 13/33



Let (M, g) be an n-dimensional Riemannian manifold and X = {xi}N
i=1 be

points sampled from a smooth density function f : M → (0,∞).

• Recall that the density-scaled Riemannian metric is g̃ := n
√

f 2α(N)2 · g,
where

α(N) :=

{
N

(log N+(n−1) log log N) log N , N > 1,
1, N = 1.

• The uniform probability measure on (M, g̃) is P(A) =
∫

A
1

µ̃(M) dṼ for
any Borel set A ⊆ M, where

dṼ =
√
|g̃| dx1 ∧ · · · ∧ dxn = α(N)f

√
|g| dx1 ∧ · · · ∧ dxn = α(N)f dV

is the volume form on (M, g̃) and µ̃(M) is the volume of (M, g̃).

=⇒ 1
µ̃(M)

dṼ = f dV.

Sampling points from (M, g) with probability density function f is
equivalent to sampling points uniformly at random from (M, g̃)!!

Density-Scaled Filtered Complex
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any Borel set A ⊆ M, where

dṼ =
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dṼ = f dV.

Sampling points from (M, g) with probability density function f is
equivalent to sampling points uniformly at random from (M, g̃)!!

Density-Scaled Filtered Complex

Yikun Zhang A Family of Density-Scaled Filtered Complexes 14/33



Let (M, g) be an n-dimensional Riemannian manifold and X = {xi}N
i=1 be

points sampled from a smooth density function f : M → (0,∞).

• Recall that the density-scaled Riemannian metric is g̃ := n
√

f 2α(N)2 · g,
where

α(N) :=

{
N

(log N+(n−1) log log N) log N , N > 1,
1, N = 1.

• The uniform probability measure on (M, g̃) is P(A) =
∫

A
1

µ̃(M) dṼ for
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• The density-scaled Čech complex is defined as:

DČ(M, g, f ,X) := Č
(
M, dM,̃g,X

)
.

⇐⇒ The set of simplices in DČ(M, g, f ,X)r at filtration level r isxJ :
⋂
j∈J

B(xj, r) ̸= ∅ and J ⊆ {1, ...,N}

 with B(x, r) :=
{

y ∈ M : dM,̃g(x, y) ≤ r
}
.

• The density-scaled Vietoris-Rips complex is defined as:

DVR(M, g, f ,X) := VR
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• The convexity radius of a Riemannian manifold (M, g) is

rconvex := sup {r : B(x, s) is geodesically convex for all x ∈ M and all 0 ≤ s < r} ,

where B(x, s) :=
{

y ∈ M : dM,g(x, y) ≤ r
}

.

• Let rconvex
N be the convexity radius of (M, g̃N), where g̃N denotes the

density-scaled Riemannian metric with N points.

• The coverage radius of a point cloud X on (M, g) is defined as:

rcover := inf

{
r : M ⊆

⋃
x∈X

B(x, r)

}
.

• Let rcover
N be the coverage radius of a point cloud X on (M, g̃N).

Theorem (Theorem 3 in Hickok 2021)
If rcover

N < r < rconvex
N , then DČ(M, g, f ,X) is homotopy-equivalent to M.

• If M is compact, then rconvex
N → ∞ as N → ∞.

• If M is compact and connected, then rcover
N

P→ 0 as N → ∞.

Convergence Property of Density-Scaled Filtered Complex
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• Let (M1, g1) and (M2, g2) be Riemannian manifolds.

• Let F : (M2, g2) → (M1, g1) be a conformal transformation (or
specifically, a diffeomorphism).

• Let f1 : M1 → (0,∞) be a smooth density function.

• The function f2 : M2 → (0,∞) is the pullback of f1 under F, i.e.,
f2dV2 = F∗(f1dV1).
Sampling a point cloud Y from f2 is equivalent to sampling a point cloud X

from f1 and setting Y = F−1(X).

Theorem (Theorem 5 in Hickok 2021)
Let Σ(M, d,X) be a distance-based filtered complex that is invariant under
global isometry. Then, the density-scaled filtered complex DΣ is invariant
under all conformal transformations.

• DΣ(M1, g1, f1,X) is isomorphic to DΣ
(
M2, g2, f2,F−1(X)

)
.

Conformal Invariance of Density-Scaled Filtered Complex
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Estimate f by kernel density estimation on Riemannian manifold
(Pelletier, 2005; Ozakin and Gray, 2009):

f̂N(y) :=
1
N

∑
x∈X

1
hn

N
K
( ||y − x||

hN

)
,

where K : R → [0,∞) is a kernel function such that

K(−x) = K(x),
∫
||z||≤1

K (||z||) dnz = 1, and K(x) = 0 for x /∈ (−1, 1).

• The default kernel in this paper is the biweight kernel

K(x) =
K̄(x)

|Sn−1|
∫ 1

0 K̄(r)rn−1 dr
with K̄(x) :=

15
16

(1 − x2)2
1{x∈(−1,1)}.

• The bandwidth parameter is chosen as hN = N− 1
n+4 in this paper,

because when hN ∝ N− 1
n+4 ,

E
[(

f̂N(y)− f (y)
)2
]
= O

(
N− 4

n+4

)
is optimal.

• Require prior knowledge of the manifold dimension n.

Implementation of Density-Scaled Filtered Complex
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Estimate the Riemannian distance dM,̃g as follows:

1 Construct the k-nearest neighbor3 graph GkNN(X).

2 Define the weight of an edge (xi, xj) ∈ GkNN(X) to

w(xi, xj) :=
n

√
α(N)max

{
f̂N(xi), f̂N(xj)

} ∣∣∣∣xi − xj
∣∣∣∣ .

3 The estimate d̂M,̃g(xi, xj) is the length of the shortest weighted path in

GkNN(X) from xi to xj. Set d̂M,̃g(xi, xj) = ∞ if xi, xj are not connected.

The approximate density-scaled Vietoris-Rips complex D̂VR(n, k,X) at
filtration level t is{

xJ : d̂M,̃g(xi, xj) ≤ 2t for all i, j ∈ J and all J ⊆ {1, ...,N}
}
.

3Choose k to be the first k for which the number of connected components in Gk′NN(X)
is equal to those in GkNN(X) for all k′ ∈ {k − 5, ..., k}.
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• Sample X = {xi}500
i=1 points from two disjoint circles C1 and C2 of radii

R1 = 1 and R2 = 5, respectively.

• The density function is given by f (x) =

{
1

4πR1
, x ∈ C1,

1
4πR2

, x ∈ C2.
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Figure 6: The number of connected components in GkNN(X) for the two-circle
point cloud example. For k ∈ {5, ..., 74}, the number of components is the true
value 2.
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• The triweight kernel with k = 10 yields the highest ratio (0.678),
slightly higher than the ratio for the biweight kernel with k = 10.

• The biweight kernel with k = 5 leads to very poor results (a ratio of
0.011), because k = 5 is too low for all of the adjacent points in X on
the largest circle to be connected by an edge in GkNN(X).

Robustness to the Choices of k and Kernel Functions
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• Sample X = {xi}200
i=1 points from a Cassini curve

r4 − 2r2 cos(2θ) = e4 − 1,

where e = 1.01 is the eccentricity and θ ∼ Uniform[0, 2π).
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• Sample 200 points uniformly at random from S1 and 20 points4

uniformly from the square [−1, 1]2.

4In the paper, the author only sampled 10 outliers from [−1, 1]2.

Point Cloud With Outliers
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• Sample 220 points uniformly at random from S1 with radial noises
N (0, 0.22).

Extension: Point Cloud Near the Manifold
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Figure 9: The weighted kNN graph GkNN(X) with k = 9.
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▶ Goal: Use D̂VR to identify the number of clusters in a point cloud
when clusters have different densities.
• Sample N = 200 points from the union of squares [0, 1]2 and

[1.5, 2.5]× [0, 1].

Application: Clustering
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• Apply D̂VR to a point cloud generated from the Lorenz dynamical
system (Lorenz, 1963): 

dx
dt = γ(y − x),
dy
dt = x(ρ− z)− y,
dz
dt = xy − βz,

where we set γ = 10, ρ = 28, and β = 8
3 .

• Set the initial condition to (x0, y0, z0) = (1, 1, 1) and solve the system
from t = 0 to t = 50 using SciPy ODE solver (Virtanen et al., 2020).

Application: Lorenz System
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Figure 11: Collection of points {(x(ti), y(ti), z(ti))}1000
i=1 with time steps ti = 0.05i.5

5In the paper, the point cloud is taken to be a 2-dim time-delay embedding of x(t) with
time lag τ = 0.05.
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Discussion
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▶ Summary: This paper (Hickok, 2021) proposed a family of
density-scaled filtered complexes for inferring the homology of a
manifold M.

▶ Main Contribution:

• The density-scaled Čech complex is homotopy-equivalent to M for a
growing interval of filtration values as N → ∞, regardless of the
geometric properties of M.

• The density-scaled filtered complexes are invariant under conformal
transformations.

• Introduce a practical algorithm for construct the density-scaled
Vietoris-Rips complex D̂VR.

Conclusion
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1 Stability of D̂VR: If two point clouds X,Y are close in Wasserstein
distance Winf(X,Y) := infη:X→Y maxx∈X ||x − η(x)||, then the
bottleneck distance5 between the persistence diagrams of D̂VR(n, k,X)

and D̂VR(n, k,Y) are close.

• The results are stated in ϵ− δ language, and we don’t know the rate of
convergence and its dependence on N, K, and n.

2 Bandwidth Selection: Other bandwidth selection methods, such as
least square cross-validation (Stone, 1984) and plug-in method
(Sheather and Jones, 1991), are worth studying.

3 Computational Efficiency: Computing D̂VR requires knowledge of
the pairwise Euclidean distances between the points in X, which has
at least O(N2) time and space complexity.

5The bottleneck distance between two diagrams is

W∞ (dgm(V),dgm(U)) := inf
η

sup
x∈dgm(V)

||x − η(x)||∞ ,

and the infimum is taken over all bijections η : dgm(V) → dgm(U).
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Thank you!
More details can be found in

Abigail Hickok. A Family of Density-Scaled Filtered Complexes. arXiv preprint, 2021.
https://arxiv.org/abs/2112.03334.
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Theorem (Theorem 3 in Hickok 2021)
If rcover

N < r < rconvex
N , then DČ(M, g, f ,X) is homotopy-equivalent to M.

• If M is compact, then rconvex
N → ∞ as N → ∞.

• If M is compact and connected, then rcover
N

P→ 0 as N → ∞.

Proof (Sketch). If r < rconvex
N , then the intersection ∩j∈JB(xj, r) is convex for

all J ⊆ {1, ...,N}, so it is either contractible or empty. If r > rcover
N , then

∪iB(xi, r) = M. Then, apply the Nerve Theorem.

• The convexity radius of a compact manifold is positive; see Chapter
6.5.3 in Berger (2003). Thus, rconvex

1 > 0, and rconvex
N = n

√
α(N) · rconvex

1 .

Proof of the Convergence Property

Yikun Zhang A Family of Density-Scaled Filtered Complexes 3/4
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N , then DČ(M, g, f ,X) is homotopy-equivalent to M.

• If M is compact, then rconvex
N → ∞ as N → ∞.

• If M is compact and connected, then rcover
N

P→ 0 as N → ∞.

Proof (Continued).
• The convergence of rcover

N is controlled by the filling factor Λ := Nνnrn

µ(M) .
Define

ΛN = logN + (n − 1) log logN + w(N) and rN =
n

√
α(N)ΛN

Nνn
,

where w(N) is a sequence with w(N) → ∞ and w(N)
log N → 0 as N → ∞,

while vn is the volume of a Euclidean unit n-ball.
For any ϵ > 0, rN < ϵ when N is sufficiently large, so

P (rconvex
N > ϵ) < P (rcover

N > rN) → 0 as N → ∞
by Theorem 1.1 in Flatto and Newman (1977) and Corollary 1 in
Hickok (2021). □

Proof of the Convergence Property
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