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In this note, we elucidate some feasible algorithms for sampling data points that are von Mises-Fisher
(vMF) distributed. Though a rejection sampling is always applicable for an arbitrary number of di-
mensions, an analytic approach can be formulated for sampling vMF random data on Ω2 ⊂ R3, where
Ωq = {x ∈ Rq+1 : ∥x∥22 = x21+ · · ·+x2q+1 = 1} is the q-dimensional sphere and || · ||2 is the usual Euclidean
norm. The analytic method is shown to be more efficient in practice. Later, we will leverage this sampling
scheme to conduct the smoothed bootstrap with directional kernel density estimators (KDEs) given a von
Mises kernel.

1 Reviews on the von Mises-Fisher Distribution

The von Mises-Fisher distribution (or von Mises distribution in Ω1) is a probability distribution supported
on Ωq ⊂ Rq+1 with density

fvMF(x;µ, κ) = Cq(κ) · exp(κµTx), (1)

where Cq(κ) =
κ

q−1
2

(2π)
q+1
2 I q−1

2
(κ)

, µ ∈ Ωq is the directional mean, κ ≥ 0 is the concentration parameter, and

Iα(κ) =
(
κ
2

)α
π
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2Γ

(
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) ∫ 1
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2 · eκtdt

is the modified Bessel function of the first kind at order κ. We denote it by vMF(µ, κ). The vMF
density can be derived from the density of a normal/Gaussain distribution N (µ,

√
κIq+1), where Iq+1 is

the identity matrix in R(q+1)×(q+1). Starting from the normal density

fN (x) =

(√
κ

2π

)p+1

exp

(
−κ∥x− µ∥22

2

)
,

one can obtain the vMF density by using the fact that ∥x − µ∥22 = 2 − 2µTx on Ωq and rescaling the
normalizing constant. For this reason, the vMF distribution is regarded as the normal distribution on the
unit hypersphere.
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2 Naive Rejection Sampling

The most naive rejection sampling for vMF-distributed data points is to set the proposal density p to be
uniformly distributed on Ωq, i.e.,

p(x) =
1

ωq(Ωq)
· 1Ωq(x) =

Γ
(
q+1
2

)
2π

q+1
2

· 1Ωq(x),

where ωq is the Lebesgue measure on Ωq. There are multiple ways to randomly sample data points from
the uniform distribution on Ωq. For instance, one can utilize the isotropic property of the multivariate
standard normal distribution and generate data points from N (0, Iq+1) with an extra L2-normalization
step. A small advantage of using the uniform distribution as the proposal density in rejection sampling is
that there is no need to calculate out the normalizing constant Cq(κ) for the von Mises-Fisher density in
order to choose the maximum value M ≥ supx∈Ωq

fvMF(x)
p(x) . This is because we may take

M = sup
x∈Ωq

fvMF(x)

p(x)
= sup

x∈Ωq

Cq(κ) · exp(κµTx)

1/ωq(Ωq)
= ωq(Ωq) · Cq(κ) · eκ

and thus f(Y )
M ·p(Y ) = exp

[
κ(µTY − 1)

]
. In a nutshell, the rejection sampling for a random vector X ∼

vMF(µ, κ) with the uniform distribution on Ωq as the proposal density is given by

1. Generate a random vector Y from the uniform distribution p on Ωq (e.g., draw a random vector
Z ∼ N (0, Iq+1) and let Y = Z

∥Z∥2 ) and another random number U from Uniform[0, 1].

2. If U < f(Y )
M ·p(Y ) = exp

[
κ(µTY − 1)

]
, we set X = Y . Otherwise go back to the previous step to draw

another new pair of Y and U .

3 Analytic vMF Sampling Strategy on Ω2

Without the loss of generality, consider generating X from vMF(µ0, κ) with µ0 = (0, ..., 0, 1)T ∈ Ωq ⊂
Rq+1. Based on the results in Ulrich (1984); Wood (1994); Kurz and Hanebeck (2015), we know that X

follows vMF(µ0, κ) if and only if

X =
(√

1−W 2 · V ,W
)T

, (2)

where V is uniformly distributed on Ωq−1 and W ∈ [−1, 1] has its probability density function as

fW (w) = Cq ·
(
1− w2

) q
2
−1

exp(κw) (3)

with C−1
q =

∫ 1
−1

(
1− w2

) q
2
−1

exp(κw)dw. In general, the cumulative distribution function (CDF) of W has
no closed forms, and Ulrich (1984) proposed another rejection sampling technique to randomly generate
points from fW with the proposal density Beta

( q
2 ,

q
2

)
; see also Wood (1994) and Section 5.1 in Dhillon

and Sra (2003).
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However, when q = 2, the density of W becomes

fW (w) =
κ

eκ − e−κ
· exp(κw)

and the corresponding CDF is

FW (t) =
eκt − e−κ

eκ − e−κ
.

Some algebra will give rise to the inverse of the CDF as

F−1
W (y) =

1

κ
log

[
y(eκ − e−κ) + e−κ

]
. (4)

To avoid numerical overflow for large values of κ, one can replace (4) with the following equivalent expres-
sion

F−1
W (y) = 1 +

1

κ
log

[
y + (1− y)e−2κ

]
. (5)

The sampling of V that is uniformly distributed on Ω1 is easy. For instance, one can sample U ∼
Uniform[0, 1] and V = (cosU, sinU) will be a uniform data sample on Ω1. Thus, the analytic strategy for
sampling X ∼ vMF(µ0, κ) is clear.

In order to handle other values of µ ∈ Ω2, one can apply a rotation matrix R ∈ R3×3 to the resulting
sample points. One remarkable fact for writing down the closed form of R is that, for the sake of bringing
a normalized vector µ0 into coincidence with another normalized vector µ, we simply need to rotate µ0

about k = µ0+µ
2 by the angle π. With Rodrigues’s rotation formula1, one gets the beautiful form

R = 2
(µ0 + µ)(µ0 + µ)T

(µ0 + µ)T (µ0 + µ)
− I3. (6)

This rotation formula works in any dimension. A small note to this rotation matrix is that it will indeed
rotate the data point about µ0 by the angle π when µ0 = µ.

In short, the analytic algorithm for randomly sampling a data point X ∼ vMF(µ, κ) with µ is given by

1. Sample two independent data points Y and U from Uniform[0, 1].

2. Compute W = 1 + 1
κ log

[
Y + (1− Y )e−2κ

]
and V = (cosU, sinU).

3. Obtain X =
(√

1−W 2V ,W
)T

and rotate it as XvMF = RX.

Simulation studies show that this analytic sampling strategy is more than 100 times faster than the
previous naive rejection sampling method.
When q ̸= 2, one can sample X ∼ vMF(µ, κ) using a faster rejection sampling approach 2; see also
Algorithm 1.

1http://en.wikipedia.org/wiki/Rodrigues’_rotation_formula and also, https://en.wikipedia.org/wiki/
Rotation_matrix

2https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-in-p-dimensions.
html
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Algorithm 1 Fast Rejection Sampling of a vMF(µ, κ) on Ωq

Input: The mean vector µ ∈ Ωq and concentration parameter κ > 0.
Step 1: Let d← dim(µ), i.e., q + 1.
Step 2: Sample data points from the marginal distribution (3) as follows:

Step 2-1: b←
√

4κ2+(d−1)2−2κ

d−1 , x0 ← 1−b
1+b , m←

d−1
2 , and c← κx0 + (d− 1) log(1− x20).

Step 2-2: t← −1000 and U ← 1.
while t < log(U) + c:

(i) z ← Beta(m,m), i.e., z is a random variable with Beta(m,m) distribution.
(ii) U ← Uniform[0, 1].

(iii) W ← 1−(1+b)z
1−(1−b)z and t← κW + (d− 1) log(1− x0W ).

endwhile
Step 3: V ← N (0, Id−1) and V ← V

∥V ∥2 .

Step 4: Obtain X =
(√

1−W 2V ,W
)T

and rotate it as XvMF = RX with (6).
Output: Point XvMF ∈ Ωq that follows the vMF(µ, κ) distribution.

4 Smoothed Bootstrap on Directional KDE with von Mises Kernel

The idea of (nonparametric) bootstrap stems from Efron’s seminal work in 1979 (Efron, 1979). A variant
of the original bootstrap is the so-called smoothed bootstrap, where the bootstrap sample is drawn from
the kernel density estimate f̂h instead of resampling from the original data set (Silverman and Young,
1987). At variance with the original bootstrap, the smoothed bootstrap takes into account both the vari-
ance and bias of the statistical quantity/functional estimated by KDE, though it will be less precise in
variance estimation compared to the original bootstrap (Chen et al., 2015).

Whereas the smoothed bootstrap has been widely used under the Euclidean KDE scenario, to the best of
our knowledge, it has no previous applications with directional KDEs. Here we summarize the procedure
of carrying out the smoothed bootstrap with directional KDEs, given the preceding discussion on sampling
vMF-distributed data. Suppose that the original directional data sample is {X1, ...,Xn} ⊂ Ωq and the
von Mises kernel L(r) = e−r is applied. Then the directional KDE becomes

f̂h(x) =
ch,q(L)

n

n∑
i=1

L

(
1− xTXi

h2

)
=

1

n

n∑
i=1

fvMF

(
x;Xi,

1

h2

)
, (7)

where ch,q(L) is a normalizing constant. Thus, the smoothed bootstrap procedure for directional KDEs
with the von Mises kernel is given by conducting the following two-step procedure repeatedly (which is
identical to the one for regular KDEs)

• Sample a data point X∗ uniformly from {X1, ...,Xn}.

• Sample X
(B)
i from vMF

(
X∗, 1

h2

)
.

The smoothed bootstrap for directional KDE with the von Mises kernel is most efficient in Ω2, since the
second step is accomplished with the aforementioned analytic sampling scheme.
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Remark 1. Note that both the original bootstrap and smoothed one can fitted into the online learning
scenario, where we only observe the streaming data. For the original bootstrap, what we need is to maintain
a (small) data set which is sampled uniformly from the whole streaming data. One notable approach to
deal with this task is the well-known reservoir sampling (Vitter, 1985). For the smoothed bootstrap in
online learning, it only requires one extra step to sample from the (directional) kernel function.
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