
Overlapping Community Detection via Edge-Space
Representation

Fengjie Chen∗ Yikun Zhang∗
Department of Statistics,

University of Washington, Seattle
Seattle, WA 98195

{chenfj3, yikun}@uw.edu

Abstract

Detecting communities helps researchers in various fields better understand the
relationships between members within their domain-specific networks. Traditional
community detection algorithms group nodes into clusters or uncover communities
based on a narrow neighborhood of each node in the network. In this paper
we refine the edge similarity in the Link Clustering[1] in light of edge-space
representation so that a broader range of network information can be incorporated.
When clustering edges in the network, our proposed edge2vec Link Clustering
method is able to detect overlapping communities. We evaluate our algorithm on the
Amazon and DBLP network data sets with ground-truth community information.
Experiments show that our proposed method is comparable to state-of-the-art
community detection algorithms.

1 Introduction

Network analysis has become an indispensable approach to understanding the organizations of
members in social science[7], interactions of protein-protein in biological networks[20], and inves-
tigations of citation and collaborations in scientific disciplines[4]. Community detection is one of
the most challenging but actively researched task among network analysis research. A community
(also referred to as a module or a cluster) is typically thought of as a group of nodes with more
connections among its members than between its members and the remainder of the network.[9]
Communities in real-world networks often overlap such that nodes simultaneously belong to several
groups.[1, 23] These overlapping structures are conceptually different from hierarchical organizations,
where communities are recursively partitioned into several nested clusters.

Even though methods for identifying overlapping as well as hierarchically-nested communities in
networks have been intensively researched[1, 17, 2, 23], uncovering meaningful communities in large
networks has proven to be a challenging task[24, 6]. There are four prominent overlapping com-
munity detection algorithms which outperforms their competitors: Link clustering (LC)[1], Clique
Percolation Method (CPM)[17], the Mixed-Membership Stochastic Block Model (MMSB)[2], and
Cluster Affiliation Model for Big Networks (BIGCLAM)[23]. From the methodological perspective,
link clustering (LC) is an unorthodox approach in the sense that it partitions links (or edges) instead
of nodes into clusters. The rest three algorithms, on the contrary, focus on grouping nodes. Clustering
over links is beneficial to overlapping community detection, since it reconciles the antagonistic
organizing principles of overlapping communities and hierarchy[1].

The originally proposed link clustering approach utilizes a singly-linkage bottom-up hierarchical
clustering method with a similarity metric defined as the Jaccard similarity between one-step neigh-
bors of the nodes on the edges that shares a common node. See Section 4.1 for details. The most
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conspicuous drawback for this similarity metric between edges is that it only takes a narrow scope of
networks into consideration. When a micro-view and a macro-view of an edge in the network can
provide us with information about the edge from different angles, the original similarity in the link
clustering method loses a lot of useful information and can not be adaptive to community detection in
miscellaneous networks.

1.1 Present work

Our main goal in this paper is to ameliorate the similarity metric in link clustering so that information
in the broader neighborhood of an edge pair can be explored and incorporated in the computation
of similarities between edges (or links). We leverage the scalability and flexibility of node2vec
feature learning mechanism for networks[11] to refine the similarity metric. Given an edge and the
node2vec feature representations of its endpoints, a binary operation can be applied to compute the
edge-space representation of the edge. For unweighted networks, people commonly use the arithmetic
mean or Hadamard product to combine node feature representations into their associated edge feature
representations. We call this method edge2vec, which is different from a previous synonymous
method[8]. With the pre-computed edge feature vectors, we naturally define an innovative similarity
metric between edges to be the cosine similarity (or normalized inner product). See Section 4.3 for
details. Before rigorously carrying out experiments on network data with ground-truth communities,
we project the node2vec and edge2vec feature representations onto the two dimensional space and
visualize it with community affiliations via the t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique[22]. The visualization indicates that community structures are well-preserved under the
latent space representation.

We then apply this similarity metric to link clustering. Note that a single-linkage hierarchical
clustering method is not necessary once we obtain edge2vec feature representations. Various clustering
methods are suitable to clustering edges, which consequently allow for overlapping node communities.

For each detected community an effort is made to interpret it as a “real” community by identifying
a common property shared by all the members of the community.[16] Such evaluation procedures
require extensive manual effort, which are non-comprehensive and limited to small networks. In order
to evaluate existing community detection methods with our modified link clustering, we retrieve two
network data sets with naturally arisen ground-truth communities from http://snap.stanford.
edu. Specifically, we conduct our experiments on the Amazon product co-purchasing network and
DBLP collaboration network and compare our proposed method with two overlapping community
detection algorithms, CPM and BIGCLAM. We omit the comparison with MMSB due to the fact
that MMSB is not scalable to such large networks and also empirically proven to be inferior than
BIGCLAM. The evaluations are based on Average F1 Score and Omega Index described in Yang and
Leskovec [23, 24].

2 Related Work

Community detection has been extensively studied in the last decades, and a number of algorithms
have been developed to detect non-overlapping communities. These community detection algorithms
essentially fall into two categories, heuristic methods (e.g. GN[9]) and optimization-based approaches
(e.g. Girvan-Newman (GN) fast[12]). In addition, Louvain method[5] is a greedy algorithm that
partitions a network into communities by maximizing a quantity called Modularity, which was
introduced by Girvan and Newman [9]. On the other hand, Andersen et al. [3] computes the
approximate personalized Page-Rank vectors and cuts a graph based on conductance.

These graph partition algorithms, however, cannot be directly adaptive to discover overlapping
communities[1]. In order to discover overlapping structures of networks, many algorithms have been
proposed, which can be roughly divided into two categories: node-based and link-based algorithms.

The node-based algorithms cluster nodes of network directly, utilizing the structural information of
nodes. For instance, researchers propose a fuzzy community detection algorithm that calculates the
possibility of each node belonging to every community.[14, 13, 2] One downside of these algorithms
is that the number of communities has to be determined in advance. There are some overlapping
community detection algorithms that are able to automatically determine the number of communities.
BIGCLAM[23] holds out 20% of node pairs and chooses the number of communities by maximizing
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the likelihood on the hold-out set. Meanwhile, it formulates community detection as a variant
of nonnegative matrix factorization (NMF) and learns latent factors which represent community
affiliations of nodes.[23] Another model called Clique Percolation Method (CPM)[17] starts from
defining a k-clique (or complete graph with k nodes) and identifies sets of nodes that can be reached
through a sequence of adjacent k-cliques as communities. Nevertheless, searching for those sets of
nodes is considered as an NP-hard problem, which can be hardly generalized to large-scale network
data.

The most well-known link-based method was proposed by Ahn et al. [1] and applied by Q.Ye et al.
[19] to massive networks. This innovative method clusters the links in a network into communities,
and then derive the corresponding node communities from link clusters based on the incident
relationship between edges and nodes. It creates the brand new avenue to study complex community
structure of networks. However, as we mentioned in the previous section 1, the main drawback of the
link clustering is that its proposed similarity metric only considers a narrow scope of neighborhoods,
which could be further improved by edge2vec edge-space representations.

Our edge2vec approach builds on top of an algorithmic framework for learning continuous feature
representations for nodes in networks. Recently, deep neural network based representation learning
has been actively studied in the fields of Natural Language Processing. In particular, the Skip-gram
model[15] aims to learn continuous feature representations for words by optimizing a neighborhood
preserving likelihood objective. Inspired by the Skip-gram model, recent research established an
analogy for networks by generating ordered sequences of nodes that serve as the neighborhoods
of nodes.[11, 18, 21] For instance, DeepWalk[18] and LINE[21] learn a d-dimensional feature
representations by simulating uniform random walks or explore immediate and two-hop neighbors
of nodes so as to sample the ordered sequence of nodes. The node2vec avenue outweighs other
feature learning methods by offering some flexibility in sampling of nodes from a network. Besides
inheriting the framework of the Skip-gram model, node2vec introduces two parameters p and q to
bias the random walks and hence interpolate between Breath-first Sampling and Depth-first Sampling.

3 Data Description

The upcoming comparisons between our proposed edge2vec method and the existing well-known
algorithms are based on two network data sets with ground-truth community labels, Amazon product
co-purchasing network and DBLP collaboration network. They are both undirected and unweighted
networks with ground-truth communities. (Note that our proposed edge2vec community detection
method can be generalized to tackling either directed or weighted network data.) We conduct our
experiments only on these two network data sets due to the limit of project duration and considerable
time needed to carry out thorough experiments.

In the Amazon network, each node represents a product with an unique product ID and each edge
connects commonly co-purchased products. Each product (i.e., node) belongs to one or more
hierarchically nested product categories, which defines ground-truth communities. Members of the
same community share a common function or a role. Ground-truth communities in the Amazon
network can be overlapping or hierarchically nested.[24]

We also use the collaboration network of DBLP (a computer science bibliography website), where
nodes represents authors/actors and edges connect nodes that have co-authored a paper. The publica-
tion venues, such as journals or conferences, are considered as ground-truth communities in DBLP
and serve as proxies for highly overlapping scientific communities around which the collaboration
network then organizes.[24] Table 1 summarizes some basic statistics of these two network data sets.

Table 1: Basic Statistics of Network Data Sets
Network Nodes Edges C ACS CM
Amazon 334863 925872 75149 30.22 6.78
DBLP 317080 1049865 13477 53.40 2.27

*C: number of communities, ACS: average community size, CM:
community memberships per node.

The histograms of node degrees for the two networks are shown in Figure 1. It illustrates that two
networks share similar patterns in their node degree distributions with heavy right tails. Note that
there are no isolated nodes (with 0 degrees) in both network data sets.
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Figure 1: Degree Distributions for Amazon and DBLP networks.

4 Method

4.1 Link Clustering

In order to group the links in a network into clusters, we need to define a similarity metric as well
as a clustering method. The original similarity metric proposed by Ahn et al. [1] limits to link pairs
that share a node, which are expected to be more similar than disconnected pairs. For an undirected,
unweighted network, we denote the set of node i and its neighbors as n+(i). The similarity S between
links (or edges) eik and ejk is defined to be[1]

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

,

when eik and ejk share a common node k. The similarity becomes 0 when two links have no common
nodes.

Based on this similarity metric, a single-linkage hierarchical clustering is applied to build a dendro-
gram. Cutting the dendrogram at some clustering threshold, it yields link communities. The choice of
the threshold is critical to the outcome of any clustering method. In this case, we choose the threshold
with maximum partition density.

partition density[1] For a network with M links and N nodes, P = {P1, P2, ..., PC} is a partition
of links into C subsets. The subset Pc has mc = |Pc| links and nc = | ∪eij∈Pc {i, j}| induced nodes.
Then the link density Dc of community c is

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
.

This is the number of links in Pc normalized by the minimum and maximum numbers of links
possible between nc connected nodes. (We assume that Dc = 0 if nc = 2) The partition density, D,
is the average of Dc, weighted by the fraction of present links:

D =
1

M

∑
c

mcDc.

This strategy of selecting the threshold for hierarchical clustering methods will remain unchanged after
we refine the similarity metric. Now we are supposed to discuss how learning feature representations
for nodes engages in the formulation of similarity between edges.

4.2 Node2vec Feature Learning

As an algorithmic frameworks for learning continuous feature representations for nodes in networks,
the node2vec model generates a mapping of nodes to a low-dimensional space of features that
maximizes the likelihood of preserving network neighborhoods of nodes.[11] Essentially, node2vec
extends the Skip-gram architecture to networks.[15]

4



4.2.1 Technical Background

Let G = (V,E) be a given network and f : V → Rd be the mapping function from nodes to feature
representations. The node2vec model seeks to maximize the log-probability of observing a network
neighborhood NS(u) for a node u conditioned on its feature representation, given by f :

max
f

∑
v∈V

logPr(NS(u)|f(u)).

The conditional independence assumption is made to simplify the optimization problem and for any
ni ∈ NS(u), the conditional likelihood of every source-neighborhood node pairs is modeled as a
softmax unit in the following way:

Pr(ni|f(u)) =
exp(f(ni) · f(u))∑
v∈V exp(f(v) · f(u)

.

In order to sample neighborhoods of a source node as a form of local search, Grover and Leskovec
[11] develop a flexible biased random walk procedure that can smoothly interpolate between Breadth-
first Sampling (BFS) and Depth-first Sampling (DFS). Given a source node u as an initial state c0, a
random walk of fixed length l will be generated by the following distribution:

P (ci = x|ci−1 = v) =

{
πvx

Z if (v, x) ∈ E,
0 otherwise,

where πvx is the unnormalized transition probability between nodes v and x, and Z is the normalizing
constant. The unnormalized transition probability πvx incorporates two parameters p and q, which
control how fast the walk explores and leaves the neighborhood of starting node u. Consider a random
walk that just traversed edge (t, v) and now resides at node v. Then the unnormalized transition
probability to next node x is defined to be πvx = αpq(t, x) · wvx, where

αpq(t, x) =


1
p if dtx = 0,

1 if dtx = 1,
1
q if dtx = 2,

and dtx ∈ {0, 1, 2} denotes the shortest path distance between nodes t and x. By setting the transition
probability in this way, the random walks are 2nd order Markovian.

4.2.2 node2vec on Amazon and DBLP Data sets

As a task-independent feature representation learning framework, node2vec can be utilized to tackle
any downstream network analysis task. This setting, on one hand, equips node2vec with great
flexibility in dealing with real-world network related problems. On the other hand, the flexibility
of node2vec comes at risk, in the sense that it may not be tailored to a particular network analysis
problem and degrade the predictability of any model built on node2vec features.

In order to empirically justify the correctness of node2vec representations on our community
detection task, we apply the node2vec algorithm on Amazon and DBLP datasets. After learning
the 128-dimension embedding vector for each node in two graphs, we visualize the nodes of 10
randomly selected gound-truth communities. Since visualizations in any space with dimension
higher than three are almost impossible, a standard high-dimensional data visualization technique
called “t-SNE” (t-Distributed Stochastic Neighbor Embedding) is applied. This technique is not only
easier to optimize when compared to Stochastic Neighbor Embedding but can produce significantly
better visualizations by reducing the tendency to crowd points together in the center of the two or
three-dimensional map.[22] Moreover, the main topological structure of node2vec representations is
well-preserved when they are projected to two-dimensional spaces. Figure 2 illuminates the t-SNE
visualizations of node2vec representations on Amazon and DBLP data sets.

In Figure 2, when represented by node2vec vectors and projected to two-dimensional spaces via
t-SNE, nodes within each community tend to be closed to each other and nodes from different
communities are relatively far away from each other. This phenomenon is particularly conspicuous
on the sampled community of the Amazon network and a majority of nodes in the sampled DBLP
network can be distinguished from communities to communities. Therefore, it is convincing that the
node2vec representation framework is suitable for community detection on our data sets.
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Figure 2: Visualization of node2vec representations on Amazon and DBLP Datasets via t-SNE

4.3 Edge2vec Feature Representation

After learning node2vec representations for all the nodes in a graph, it is natural to define the
similarity for pair of nodes by the usual cosine similarity,

S(i, j) =
f(i)T f(j)

||f(i)||2 · ||f(j)||2
,

where || · ||2 is the L2 norm and f(i), f(j) ∈ Rd are node2vec representations of nodes i and j,
respectively. Based on the cosine similarity metric, any state-of-the-art clustering methods can be
applied to group nodes into communities. Hence the node2vec feature learning framework provides
us a possible venue to carry out community detection on any given dataset.

However, community detection relied on node2vec representations, though reasonable and powerful
in some cases, embraces a salient drawback, that is, it can hardly deal with cases when overlapping
communities are present. As mentioned earlier, we are supposed to inherit the mechanism of link
clustering. In order to bridge the connection between node2vec representations and link clustering,
two components are indispensable, an edge representation learning approach and similarity metric
for links (or edges).

4.3.1 Mathematical Background

We seek to preserve the powerful property of node2vec feature representation when it comes
to community detection. Thus, our edge2vec feature representation is built on top of node2vec
algorithmic framework. Given two nodes i and j and their node2vec feature vector f(i), f(j), the
edge2vec representation of eij is defined to be

vec(eij) = f(i) ◦ f(j),

where the binary operator ◦ can be the arithmetic mean, Hadamard product, or weighted-L1/L2
operations.[11] As for our experiments in this paper, we insist on the arithmetic mean approach to
calculate edge2vec representations. Depending on the real-world scenarios, other binary operations
might be more appropriate.

After the definition of edge2vec representations is clear, the similarity metric between pair of adjacent
edges eik, ejk can be computed as node2vec representations, i.e., the cosine similarity (or normalized
inner product)

S(eik, ejk) =
vec(eik)T vec(ejk)

||vec(eik)||2 · ||vec(ejk)||2
,

where vec(eik) ∈ Rd is the edge2vec feature vector of eik. If two edges share no common nodes, the
similarity between them is again 0.
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4.3.2 Edge2vec on Amazon and DBLP datasets

Similarly, we conduct some visualizations of edge2vec representation based on ground-truth commu-
nity labels so as to verify the validity of applying edge2vec to community detection. As implemented
in the node2vec part, we utilize t-SNE to project the learned edge2vec vectors of Amazon and DBLP
data sets to two-dimensional spaces. See Figure 3 for details.
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Figure 3: Visualization of edge2vec representations on Amazon and DBLP Datasets via t-SNE

Figure 3 again serves as a more convincing evidence that edge2vec representations have the capability
to distinguish communities from each other. In both Amazon and DBLP datasets, the edge2vec
vectors within community are gathered together while edges from different communities tend to stay
away from each other when projected to lower dimensional spaces.

4.4 Edge2vec Link Clustering Algorithm

For each network data, we first run a node2vec algorithm to obtain feature vectors of each node in the
network. Then the feature vector of each edge (i, j) is computed as an arithmetic mean of feature
vectors of i and j. In order to improve the performance of link clustering, we replace its original
similarity metric with cosine similarity between edge feature representations. Except for the edge
similarity, we conscientiously follow the single-linkage hierarchical clustering method and cut the
dendrogram based on maximum partition density. After node communities are identified by our
modified link clustering method, we use two evaluation metrics defined below to quantify its accuracy
and compare with other state-of-the-art overlapping community detection algorithms.

4.5 Evaluation Metrics

The availability of network data with ground-truth communities enable us to quantitatively evaluate
the performance of community detection algorithms. For evaluation we use metrics that quantify
the level of correspondence between the detected and the ground-truth communities.[23] Given
network G = (V,E), we denote C∗ as a set of ground-truth communities and Ĉ as a set of detected
communities, where each Ci ∈ C∗ and each Ĉi ∈ Ĉ is a set of its member nodes. To measure how
similar Ĉ is to C∗, we consider:

Average F1 score[23] We define F1 score to be the average of the F1-score of the best-matching
ground-truth community to each detected community, and the F1-score of the best-matching detected
community to each ground-truth community:

1

2

 1

|C∗|
∑
Ci∈C∗

F1(Ci, Ĉg(i)) +
1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cg′ (i), Ĉi)

 ,
where the best matching g and g′ is defined as follows:

g(i) = arg max
j

F1(Ci, Ĉj), g′(i) = arg max
j

F1(Cj , Ĉi)
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and F1(Ci, Ĉj) is the harmonic mean of Precision and Recall.

Omega Index[10] is the accuracy on estimating the number of communities that each pair of nodes
shares:

1

|V |2
∑
u,v∈V

1{|Cuv| = |Ĉuv|}

where Cuv is the set of ground-truth communities that nodes u and v share and Ĉuv is the set of
detected communities that they share.

For these two metrics higher values are equivalent to more “accurately” detected communities.
Maximum value of 1 is attained when the detected communities perfectly corresponds to the ground-
truth communities.

5 Results

We proceed by evaluating the performance of our modified link clustering method and comparing it
to some prominent baseline community detection algorithms on the Amazon and DBLP network data
set. These baseline methods are the original Link Clustering (LC)[1], Clique Percolation Method
(CPM)[17], and Cluster Affiliation Model for Big Networks (BIGCLAM)[23].

We use the Python implementation for the original link clustering provided by the author on his
GitHub: https://github.com/bagrow/linkcomm. For CPM and BIGCLAM, we run the Python
code in the Stanford Network Analysis Platform (SNAP)2. For CPM, we use the clique size k =
3. For BIGCLAM, the number of communities is automatically determined by maximizing the
likelihood on the hold out set and the maximal number of communities to try is 10000. Our
node2vec implementation also relies on this SNAP platform and the open source code on GitHub:
https://github.com/aditya-grover/node2vec. To be consistent with the experiments in the
original paper[11], we set the parameters for node2vec as follows.

• Dimension of feature vectors: 128
• The number of simulated random walks per node: 20
• The length of each random walk: 80
• The context window size (inheriting from the Skip-gram model): 10
• The number of iterations in the optimization step: 20
• The return parameter p: 0.4
• The in-out parameter q: 1.0

Unless mentioned explicitly, the parameter choices will be default values for all aforementioned
methods in the subsequent experiments.

5.1 Experimental Setup

Given an unlabeled undirected network G (with hold out known ground-truth communities C∗) we
aim to uncover communities Ĉ such that Ĉ closely match the ground-truth communities C∗.

Based on our experiments, BIGCLAM, original LC, and our proposed method can process our
large-scale network data sets (contradictory to the claim in Yang and Leskovec [23]). However, CPM
cannot scale to networks of such size. Therefore, when comparing our modified LC to BIGCLAM
and the original LC, we conduct the experiments on the whole Amazon and DBLP networks. To allow
for comparison between our method and CPM, we apply the following simulation strategy described
in Yang and Leskovec [23], where the goal is to obtain a large set of relatively small subnetworks
with overlapping community structure. For each graph G, we pick a random node u that belongs to
at least two communities. We then take the subnetwork to be the induced subgraph of G consisting of
all the nodes that share at least one ground-truth community membership with u. Since on average
95% of all ground-truth communities overlap[23], this simulation procedure does not bias towards
overlapping communities and we can easily obtain 100 different subnetworks for each network data.

2http://snap.stanford.edu/
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5.2 Evaluation Details

In our experiments, we believe that informative and useful communities should have at least 3
members, so we discard the detected communities with size less than 3 when computing Average
F1 score and Omega Index. In addition, computing Average F1 score needs O(m1m2) time, and
computing Omega Index needs O(n2) time, where m1 = |C∗| is the number of ground-truth
communities, m2 = |Ĉ| is the number of detected communities, and n = |V | is the total number of
nodes in a network. For our two network data sets, m1 ≥ 10000,m2 ≈ 100000, n ≥ 300000, so
computing evaluation metrics is substantially time-consuming.

To tackle this issue, a Monte Carlo method is introduced. Suppose K detected communities are
sampled uniformly fromm2 detected communities. For each sample Ĉk, F1(Cg′ (k), Ĉk) is computed

and denoted as x(2)k . Our estimate of Average F1 score becomes

1

2

[
x(1) +

1

K

K∑
k=1

x
(2)
k

]
,

where x(1) = 1
|C∗|

∑
Ci∈C∗ F1(Ci, Ĉg(i)) is the true average F1-score from the best-matching of

ground-truth communities. If we denote the true average F1-score from the best-matching of detected
communities by x(2), then by Chebyshev’s inequality,

P

[
1

2
(x(1) +

1

K

∑
x
(2)
k )− 1

2
(x(1) + x(2)) > ε

]
= P (|x̄(2)−x(2)| > 2ε) ≤

V ar(x
(2)
k )

K · 4ε2
≤ 1

4Kε2
.

If we want the probability to be less than 0.05 and pick ε = 0.05, we need K ≥ 2000. That is,
with probability greater than 95%, our Monte Carlo estimate lies within 0.05-range of true value
if we only sample 2000 true communities for calculating the best-matching in the true community
pool. The same error estimate inequality applies to the calculations of the best-matching for true
communities to detected communities. Using the similar argument, we sample 50000 pairs of nodes
to compute Omega Index, which ensures that with probability greater than 95% our estimate lies
within 0.02-range from the true Omega Index.

5.3 Experimental Results

For the BIGCLAM, original LC, and our edge2vec LC, we measure the average F1-score and Omega
Index on the whole Amazon and DBLP network data sets. For the CPM, original LC, and our
edge2vec LC, we compute the average value of these two metrics over the 100 subnetworks using the
strategy described in Section 5.1. Then we display the composite performance by summing up the
average F1-score and Omega Index for each method in Figure 4.
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Figure 4: Composite Performances of Methods on Amazon and DBLP Network. B: BIGCLAM; LC:
Link Clustering; ELC: edge2vec Link Clustering; C: Clique percolation method (CPM).

When applied on the whole network data set, our proposed edge2vec link clustering method outper-
forms the effective BIGCLAM algorithm in terms of both the average F1-score and Omega Index.
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Moreover, the composite performance of our edge2vec link clustering is around 1.38 on the DBLP
data set, which slightly outweighs the original link clustering method. As for simulated subnetworks,
our edge2vec link clustering has the average composite score 1.09, which is almost 8.5% higher than
CPM (0.92) on the DBLP data set. The reason why our edge2vec link clustering method embraces
less decent performance on the Amazon data set is that the Amazon network is sparser on edges but
have more labeled communities. When fewer edges are present, the information retained in edge2vec
representations tends to be less sufficient. However, given the fact that we have not conduct thorough
experiments to figure out the optimal binary operation from node2vec to edge2vec, the results here
are promising and have great research potential.

In order to present the capability of our proposed edge2vec link clustering method to uncover
overlapping communities, we visualize a partial Amazon network with detected communities from
our method in Figure 5.

Figure 5: Partial Detected Communities via our edge2vec LC Method on the Amazon Network

6 Conclusion and Future Work

In this paper we proposed a framework that incorporates task-independent feature representation
learning for nodes in a network into community detection. When network structures are manipulated
to edge2vec latent space representations, the community structure in the original network is well-
preserved. By utilizing cosine similarity to embed edge2vec representations into the definition of
edge similarity in the conventional Link Clustering method, our proposed edge2vec Link Clustering
method not only has the capability to detect overlapping community structures but is also scalable
to large networks with millions of nodes and edges. Experiments on the Amazon and DBLP
network data sets indicate that our proposed method is comparable to the existing popular community
detection algorithms and can even outperform them when the network data is more compact and has
comparatively fewer number of communities.

Our work sheds light on the possibility of combining unsupervised feature learning on graphs with
overlapping community detection. One potential future direction is to investigate the optimal operation
for transforming from the node-space representation to corresponding edge-space representation. For
instance, the semantics of edges can be taken into account during feature representation learning.[8]
It enables us to further improve the performance of our edge2vec link clustering method under
miscellaneous scenarios. Meanwhile, when two-dimensional edge2vec visualizations with ground-
truth communities yields promising results, it is possible to project the edge2vec feature vectors to
lower dimensional spaces before computing edge similarity. This pre-processing procedure is worth
being scrutinized in order to release the magic of edge-space feature learning.

7 Individual Contributions

Fengjie Chen: Problem formulation, coming up with the algorithm idea, implementing the original
Link Clustering and our edge2vec Link Clustering, coding up evaluation metrics, tabulating final
results, and carrying out the detected community visualization for our method, responsible for the
final report writeups, etc.

Yikun Zhang: Problem formulation, coming up with the algorithm idea, implementing the node2vec,
CPM, and BIGCLAM methods, coding up the subnetwork simulation strategy, plotting graphs for
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data descriptions and t-SNE visualizations of node2vec and edge2vec representations, responsible
for the report and poster writeups, etc.
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