STAT 538: Statistical Learning: Modeling, Prediction, And Computing Winter 2023

Lecture 16: Rank-Sparsity Matrix Decomposition

Lecturer: Armeen Taeb

Scribe: Yikun Zhang

Parts of the notes are based on Chandrasekaran et al. [2009, 2011].

Setting: Let $C = A^* + B^*$ with $A^* \in \mathbb{R}^{n \times n}$ being a sparse matrix and $B^* \in \mathbb{R}^{n \times n}$ a low-rank matrix, where both A^* and B^* are unknown. In this notes, we restrict ourselves to square matrices in $\mathbb{R}^{n \times n}$, but the analysis can be extended to rectangular matrices $\mathbb{R}^{n_1 \times n_2}$ if we simply replace n by max $\{n_1, n_2\}$.

Goal: Given C, we want to recover A^* and B^* without any prior information about the sparsity pattern of A^* or the rank/singular vectors of B^* .

Solution: Consider the following optimization problem:

$$\underset{A,B}{\operatorname{arg\,min}} \left[\gamma \left| \left| A \right| \right|_{1} + \left| \left| B \right| \right|_{\star} \right]$$
subject to $A + B = C.$
(1)

Here, $||A||_1 = \sum_{i,j} |A_{ij}|$ is the elementwise L_1 -norm of a matrix A, $||B||_{\star} = \sum_k \sigma_k(B)$ is the nuclear norm, which is the sum of the singular values of B, and γ is a tuning parameter that provides a trade-off between the low-rank and sparse components.

Remark 1. This optimization problem (1) is convex and can be written as a semi-definite program (SDP; Vandenberghe and Boyd 1996), for which there exist polynomial-time general- purpose solvers; see Appendix A in Chandrasekaran et al. [2011]. Under a mild tightening of the conditions for fundamental identifiability, the minimizer of (1) is unique and recover A^*, B^* . Essentially, these conditions require that the sparse matrix does not have support concentrated within a single row/column, while the low-rank matrix does not have row/column spaces closely aligned with the coordinate axes [Chandrasekaran et al., 2009].

Notations: We begin by introducing several algebraic varieties¹. The set of rank-constrained matrices is defined as:

$$\mathcal{P}(k) = \left\{ M \in \mathbb{R}^{n \times n} : \operatorname{rank}(M) \le k \right\}.$$

This is an algebraic variety with dimension $k(2n-k) = n^2 - (n-k)^2$, since it can be defined through the vanishing of all $(k+1) \times (k+1)$ minors of the matrix M. Let $M = UDV^T \in \mathbb{R}^{n \times n}$ be the singular value decomposition of M with $U, V \in \mathbb{R}^{n \times k}$ and $\operatorname{rank}(M) = k$. The tangent space at M is defined as:

$$T(M) = \left\{ UX^T + YV^T : X, Y \in \mathbb{R}^{n \times n} \right\},\$$

which consists of the span of all matrices with either the same row space as M or the same column space as M. We also define

$$\Omega(M) = \left\{ N \in \mathbb{R}^{n \times n} : \operatorname{support}(N) \subseteq \operatorname{support}(M) \right\}$$

which is the tangent space of $\{M \in \mathbb{R}^{n \times n} : | \text{support}(M) | \le m\}$. Consider the following two quantities:

$$\xi(M) = \max_{N \in T(M), ||N||_2 \le 1} ||N||_{\infty}$$

¹Recall that an algebraic variety is defined as the zero set of a system of polynomial equations [Hartshorne, 2013].

which will be small when (appropriately scaled) elements of the tangent space T(M) are "diffuse" (*i.e.*, these elements are not too sparse), and

$$\mu(M) = \max_{N \in \Omega(M), ||N||_{\infty} \le 1} ||N||_{2}$$

which will be small when the spectrum of any matrix in $\Omega(M)$ is "diffuse" (*i.e.*, the singular values of these elements are not too large). Here, $|| \cdot ||_{\infty}$ denotes the largest entry in magnitude and $|| \cdot ||_2$ is the spectral norm (*i.e.*, the largest singular value).

Remark 2. One can show that

$$\deg_{\min}(M) \le \mu(M) \le \deg_{\max}(M)$$

where $\deg_{\max}(M)$ is the maximum number of nonzero entries per row/column and $\deg_{\min}(M)$ is the minimum number of nonzero entries per row/column; see Proposition 3 in Chandrasekaran et al. [2011]. Analogously, we can bound $\xi(M)$ as:

$$\operatorname{inc}(M) \le \xi(M) \le 2 \cdot \operatorname{inc}(M),$$

where $\operatorname{inc}(M) = \max \{\beta (\operatorname{row-space}(M)), \beta (\operatorname{column-space}(M))\}\$ is the incoherence of the row/column spaces of a matrix $M \in \mathbb{R}^{n \times n}$ with $\beta(S) = \max_i ||P_S e_i||_2$ as the incoherence of a subspace $S \subset \mathbb{R}^n$. Here, $\{e_1, ..., e_n\}$ is the standard basis of \mathbb{R}^n , P_S denotes the projection onto the subspace S, and $||\cdot||_2$ is the vector ℓ_2 -norm.

1 Basic Properties

Proposition 1. If $\mu(A^*)\xi(B^*) < 1$ for two matrices $A^*, B^* \in \mathbb{R}^{n \times n}$, then $\Omega(A^*) \cap T(B^*) = \{0\}$.

We may choose γ properly to have $\mu(A^*)\xi(B^*) < 1/6$, which guarantees the recoveries of A^* and B^* . To establish Proposition 1, we leverage the following lemma.

Lemma 2. $\max_{N \in T(B^*), ||N||_2 \le 1} \left| \left| P_{\Omega(A^*)}(N) \right| \right|_2 \le \mu(A^*) \cdot \xi(B^*), \text{ where } P_{\Omega(A^*)}(N) \text{ is the projection of } N \text{ on the space } \Omega(A^*).$

Proof of Lemma 2. We have the following sequence of inequalities:

$$\begin{aligned} \max_{N \in T(B^*), ||N||_2 \le 1} \left\| \left| P_{\Omega(A^*)}(N) \right| \right\|_2 &\leq \max_{N \in T(B^*), ||N||_2 \le 1} \mu(A^*) \left\| P_{\Omega(A^*)}(N) \right\|_{\infty} \\ &\leq \max_{N \in T(B^*), ||N||_2 \le 1} \mu(A^*) \left\| N \right\|_{\infty} \\ &= \mu(A^*) \cdot \xi(B^*), \end{aligned}$$

where the first inequality follows from the definition of $\mu(A^*)$ as $P_{\Omega(A^*)}(N) \in \Omega(A^*)$ and the second inequality is due to $||P_{\Omega(A^*)}(N)||_{\infty} \leq ||N||_{\infty}$.

Proof of Proposition 1. Suppose that there exists $\tilde{N} \neq 0$ and $\tilde{N} \in \Omega(A^*) \cap T(B^*)$. Given that $\tilde{N} \in T(B^*)$, we can scale \tilde{N} so that $||\tilde{N}||_2 = 1$. Thus, by Lemma 2,

$$\mu(A^*)\xi(B^*) \ge \max_{N \in T(M), ||N||_2 \le 1} \left| \left| P_{\Omega(A^*)}(N) \right| \right|_2 \ge \left| \left| P_{\Omega(A^*)}(\tilde{N}) \right| \right|_2 = 1$$

contradicting to $\mu(A^*)\xi(B^*) < 1$. The result follows.

One important consequence of Proposition 1 is the following rank-sparsity uncertainty principle.

Theorem 3 (Rank-Sparsity Uncertainty Principle). For a matrix $M \neq 0$, we have that

$$\xi(M) \cdot \mu(M) \ge 1.$$

Proof. Notice that $M \in \Omega(M) \cap T(M)$. By Proposition 1, we know that $\xi(M) \cdot \mu(M) < 1$, leading to a contradiction.

2 Optimality Condition

Consider the Lagrangian function of (1) as:

$$\mathcal{L}(A, B, Q) = \gamma ||A||_1 + ||B||_* + \langle Q, C - A - B \rangle.$$

From the optimality conditions of a convex program, (A^*, B^*) is a minimizer of (1) if and only if the dual matrix $Q \in \mathbb{R}^{n \times n}$ satisfies

$$Q \in \gamma \partial ||A^*||_1 \quad \text{and} \quad Q \in \partial ||B^*||_{\star}.$$
⁽²⁾

Based on the subdifferentials of $\|\cdot\|_1$ and $\|\cdot\|_{\star}$, we know that (2) is equivalent to

$$P_{\Omega(A^*)}(Q) = \gamma \text{sign}(A^*), ||P_{\Omega(A^*)}(Q)||_{\infty} \le \gamma \quad \text{and} \quad P_{T(B^*)}(Q) = UV^T, ||P_{T(B^*)^{\perp}}(Q)||_2 \le 1, \quad (3)$$

where $U, V \in \mathbb{R}^{n \times k}$ comes from $B^* = U\Sigma V^T$. (Recall that $\partial ||B^*||_* = \{UV^T + W : U^TW = WV^T = 0\}$.) Notice that (3) are necessary and sufficient conditions for (A^*, B^*) be **a** minimizer of (1). To ensure the uniqueness for the solution to (1), we need to tighten the conditions in (2) and (3) as the following proposition.

Proposition 4 (Uniqueness of the Optimal Solution). Suppose that $C = A^* + B^*$. Then, $(\hat{A}, \hat{B}) = (A^*, B^*)$ is the unique minimizer of (1) if the following conditions are satisfied:

- 1. $\Omega(A^*) \cap T(B^*) = \{0\}.$
- 2. There exists a dual matrix $Q \in \mathbb{R}^{n \times n}$ such that
 - (a) $P_{T(B^*)}(Q) = UV^T;$
 - (b) $P_{\Omega(A^*)}(Q) = \gamma \cdot \operatorname{sign}(A^*);$
 - (c) $||P_{T(B^*)^{\perp}}(Q)||_2 < 1;$
 - (d) $\left\| P_{\Omega(A^*)^c}(Q) \right\|_{\infty} < \gamma.$

Proof of Proposition 4. Notice that (A^*, B^*) is an optimum by the condition 2 in Proposition 4. To avoid cluttered notation, we let $\Omega = \Omega(A^*), T = T(B^*), \Omega^c = \Omega(A^*)^c$, and $T_{\perp}(B^*) = T^{\perp}$.

Suppose that there is another feasible solution $(A^* + N_A, B^* + N_B)$ that also minimizes (1). Since $A^* + B^* = C = (A^* + N_A) + (B^* + N_B)$, we must have $N_A + N_B = 0$. For any subgradient (Q_A, Q_B) of the function $\gamma ||A||_1 + ||B||_*$ at (A^*, B^*) , we have that

$$\gamma ||A^* + N_A||_1 + ||B^* + N_B||_* \ge \gamma ||A^*||_1 + ||B^*||_* + \langle Q_A, N_A \rangle + \langle Q_B, N_B \rangle.$$
(4)

Since (Q_A, Q_B) is a subgradient of the function $\gamma ||A||_1 + ||B||_*$ at (A^*, B^*) , we must have from (3) that

- $Q_A = \gamma \cdot \operatorname{sign}(A^*) + P_{\Omega^c}(Q_A)$ with $||P_{\Omega^c}(Q_A)||_{\infty} \leq \gamma;$
- $Q_B = UV^T + P_{T^{\perp}}(Q_B)$ with $||P_{T^{\perp}}(Q_B)||_2 \le 1$.

Figure 1: Geometric interpretation of optimality conditions: the existence of a dual matrix Q.

Thus, we calculate that

$$\begin{aligned} \langle Q_A, N_A \rangle &= \langle \gamma \cdot \operatorname{sign}(A^*) + P_{\Omega^c}(Q_A), N_A \rangle \\ &= \langle P_\Omega(Q) + P_{\Omega^c}(Q_A), N_A \rangle \quad \text{using (b) in Condition 2} \\ &= \langle P_{\Omega^c}(Q_A) - P_{\Omega^c}(Q), N_A \rangle + \langle Q, N_A \rangle \quad \text{by } P_\Omega(Q) = Q - P_{\Omega^c}(Q). \end{aligned}$$

Similarly, we have that

$$\begin{aligned} \langle Q_B, N_B \rangle &= \langle UV^T + P_{T^{\perp}}(Q_B), N_B \rangle \\ &= \langle P_T(Q) + P_{T^{\perp}}(Q_B), N_B \rangle \quad \text{using (a) in Condition 2} \\ &= \langle P_{T^{\perp}}(Q_B) - P_{T^{\perp}}(Q), N_B \rangle + \langle Q, N_B \rangle \quad \text{by } P_T(Q) = Q - P_{T^{\perp}}(Q). \end{aligned}$$

Adding the above two equalities together gives us that

$$\langle Q_A, N_A \rangle + \langle Q_B, N_B \rangle = \langle P_{\Omega^c}(Q_A) - P_{\Omega^c}(Q), N_A \rangle + \langle Q, N_A \rangle + \langle P_{T^{\perp}}(Q_B) - P_{T^{\perp}}(Q), N_B \rangle + \langle Q, N_B \rangle$$

= $\langle P_{\Omega^c}(Q_A) - P_{\Omega^c}(Q), P_{\Omega^c}(N_A) \rangle + \langle P_{T^{\perp}}(Q_B) - P_{T^{\perp}}(Q), P_{T^{\perp}}(N_B) \rangle,$ (5)

where we use the fact that $N_A + N_B = 0$ and the projection matrices $P_{\Omega^c}, P_{T^{\perp}}$ are idempotent.

Given that any subgradient (Q_A, Q_B) of the function $\gamma ||A||_1 + ||B||_*$ at (A^*, B^*) will satisfy the above equality, we can choose (Q_A, Q_B) as follows:

- Take Q_A so that $P_{\Omega^c}(Q_A) = \gamma \cdot \operatorname{sign}(P_{\Omega^c}(N_A))$ with $||P_{\Omega^c}(Q_A)||_{\infty} \leq \gamma$ and $\langle P_{\Omega^c}(Q_A), P_{\Omega^c}(N_A) \rangle = \gamma ||P_{\Omega^c}(N_A)||_1$.
- Given the singular value decomposition of $P_{T^{\perp}}(N_B) = \tilde{U}\tilde{\Sigma}\tilde{V}^T$, we choose Q_B so that $P_{T^{\perp}}(Q_B) = \tilde{U}\tilde{V}^T$ with $||P_{T^{\perp}}(Q_B)||_2 = 1$ and $\langle P_{T^{\perp}}(Q_B), P_{T^{\perp}}(N_B) \rangle = ||P_{T^{\perp}}(N_B)||_{\star}$.

Under this choice of (Q_A, Q_B) , we simplify (5) as:

$$\langle Q_A, N_A \rangle + \langle Q_B, N_B \rangle = \langle P_{\Omega^c}(Q_A) - P_{\Omega^c}(Q), P_{\Omega^c}(N_A) \rangle + \langle P_{T^{\perp}}(Q_B) - P_{T^{\perp}}(Q), P_{T^{\perp}}(N_B) \rangle$$

$$\geq (\gamma - ||P_{\Omega^{c}}(Q)||_{\infty}) ||P_{\Omega^{c}}(N_{A})||_{1} + (1 - ||P_{T^{\perp}}(Q)||_{2}) ||P_{T^{\perp}}(N_{B})||_{\star}$$

> 0

unless $P_{\Omega^c}(N_A) = P_{T^{\perp}}(N_B) = 0$, where we obtain the last positivity based on (c) and (d) in Condition 2. However, if $P_{\Omega^c}(N_A) \neq 0$ or $P_{T^{\perp}}(N_B) \neq 0$, we know from (4) that

$$\gamma ||A^* + N_A||_1 + ||B^* + N_B||_{\star} > \gamma ||A^*||_1 + ||B^*||_{\star}$$

which violates the optimality of $(A^* + N_A, B^* + N_B)$. Now, when $P_{\Omega^c}(N_A) = P_{T^{\perp}}(N_B) = 0$, $P_{\Omega}(N_A) + P_T(N_B) = 0$ as well because of $N_A + N_B = 0$. In other words,

$$P_{\Omega}(N_A) = -P_T(N_B).$$

This is only possible if $P_{\Omega}(N_A) = P_T(N_B) = 0$ because $\Omega \cap T = \{0\}$ by Condition 1, which in turn implies that $N_A = N_B = 0$. The proof of uniqueness is completed.

While Proposition 4 sheds light on the sufficient conditions for uniquely recovering (A^*, B^*) , we now discuss the existence of an appropriate dual matrix Q entailed by Proposition 4. From Proposition 1, we already know that Condition 1 in Proposition 4 $(\Omega(A^*) \cap T(B^*) = \{0\})$ is valid when $\mu(A^*)\xi(B^*) < 1$. If we slightly strengthen the condition as $\mu(A^*)\xi(B^*) < \frac{1}{6}$, there will be a dual matrix Q satisfying the requirements in Condition 2 of Proposition 4 as well.

Theorem 5. Given $C = A^* + B^*$ with $\mu(A^*)\xi(B^*) < \frac{1}{6}$, the unique minimizer (\hat{A}, \hat{B}) of (1) will be (A^*, B^*) for the following range of γ :

$$\gamma \in \left(\frac{\xi(B^*)}{1 - 4\mu(A^*)\xi(B^*)}, \frac{1 - 3\mu(A^*)\xi(B^*)}{\mu(A^*)}\right)$$

Specifically, $\gamma = \frac{[3\xi(B^*)]^p}{[2\mu(A^*)]^{1-p}}$ for any choice of $p \in [0,1]$ is always inside the above range and thus guarantees exact recovery of (A^*, B^*) .

The detailed proof of Theorem 5 can be found in Theorem 2 of [chandrasekaran2011rank]. The high-level idea is that we consider candidates for the dual matrix Q in the direct sum $\Omega(A^*) \oplus T(B^*)$ of the tangent spaces. Since $\mu(A^*)\xi(B^*) < \frac{1}{6}$, $\Omega(A^*) \cap T(B^*) = \{0\}$ by Proposition 1 and there exists a *unique* element $\hat{Q} \in \Omega(A^*) \oplus T(B^*)$ satisfying $P_{T(B^*)}(\hat{Q}) = UV^T$ and $P_{\Omega(A^*)}(\hat{Q}) = \gamma \cdot \text{sign}(A^*)$. The proof proceeds by showing that if $\mu(A^*)\xi(B^*) < \frac{1}{6}$, then the projections of \hat{Q} onto the orthogonal spaces $\Omega(A^*)^c$ and $T(B^*)^{\perp}$ are small, and Condition 2 of Proposition 4 is thus satisfied.

Other further reading for the course:

 Chandrasekaran, V., Recht, B., Parrilo, P. A., & Willsky, A. S. (2012). The convex geometry of linear inverse problems. *Foundations of Computational Mathematics*, 12, 805-849.

References

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Sparse and low-rank matrix decompositions. *IFAC Proceedings Volumes*, 42(10):1493–1498, 2009.

- V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for matrix decomposition. *SIAM Journal on Optimization*, 21(2):572–596, 2011.
- R. Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
- L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49-95, 1996.