Parts of the notes are based on Chandrasekaran et al. [2009, 2011].
Setting: Let $C=A^{*}+B^{*}$ with $A^{*} \in \mathbb{R}^{n \times n}$ being a sparse matrix and $B^{*} \in \mathbb{R}^{n \times n}$ a low-rank matrix, where both A^{*} and B^{*} are unknown. In this notes, we restrict ourselves to square matrices in $\mathbb{R}^{n \times n}$, but the analysis can be extended to rectangular matrices $\mathbb{R}^{n_{1} \times n_{2}}$ if we simply replace n by $\max \left\{n_{1}, n_{2}\right\}$.

Goal: Given C, we want to recover A^{*} and B^{*} without any prior information about the sparsity pattern of A^{*} or the rank/singular vectors of B^{*}.

Solution: Consider the following optimization problem:

$$
\begin{align*}
& \underset{A, B}{\arg \min }\left[\gamma\|A\|_{1}+\|B\|_{\star}\right] \tag{1}\\
& \quad \text { subject to } A+B=C .
\end{align*}
$$

Here, $\|A\|_{1}=\sum_{i, j}\left|A_{i j}\right|$ is the elementwise L_{1}-norm of a matrix $A,\|B\|_{\star}=\sum_{k} \sigma_{k}(B)$ is the nuclear norm, which is the sum of the singular values of B, and γ is a tuning parameter that provides a trade-off between the low-rank and sparse components.

Remark 1. This optimization problem (1) is convex and can be written as a semi-definite program (SDP; Vandenberghe and Boyd 1996), for which there exist polynomial-time general- purpose solvers; see Appendix A in Chandrasekaran et al. [2011]. Under a mild tightening of the conditions for fundamental identifiability, the minimizer of (1) is unique and recover A^{*}, B^{*}. Essentially, these conditions require that the sparse matrix does not have support concentrated within a single row/column, while the low-rank matrix does not have row/column spaces closely aligned with the coordinate axes [Chandrasekaran et al., 2009].

Notations: We begin by introducing several algebraic varieties ${ }^{1}$. The set of rank-constrained matrices is defined as:

$$
\mathcal{P}(k)=\left\{M \in \mathbb{R}^{n \times n}: \operatorname{rank}(M) \leq k\right\}
$$

This is an algebraic variety with dimension $k(2 n-k)=n^{2}-(n-k)^{2}$, since it can be defined through the vanishing of all $(k+1) \times(k+1)$ minors of the matrix M. Let $M=U D V^{T} \in \mathbb{R}^{n \times n}$ be the singular value decomposition of M with $U, V \in \mathbb{R}^{n \times k}$ and $\operatorname{rank}(M)=k$. The tangent space at M is defined as:

$$
T(M)=\left\{U X^{T}+Y V^{T}: X, Y \in \mathbb{R}^{n \times n}\right\}
$$

which consists of the span of all matrices with either the same row space as M or the same column space as M. We also define

$$
\Omega(M)=\left\{N \in \mathbb{R}^{n \times n}: \operatorname{support}(N) \subseteq \operatorname{support}(M)\right\}
$$

which is the tangent space of $\left\{M \in \mathbb{R}^{n \times n}:|\operatorname{support}(M)| \leq m\right\}$. Consider the following two quantities:

$$
\xi(M)=\max _{N \in T(M),\|N\|_{2} \leq 1}\|N\|_{\infty}
$$

[^0]which will be small when (appropriately scaled) elements of the tangent space $T(M)$ are "diffuse" (i.e., these elements are not too sparse), and
$$
\mu(M)=\max _{N \in \Omega(M),\|N\|_{\infty} \leq 1}\|N\|_{2}
$$
which will be small when the spectrum of any matrix in $\Omega(M)$ is "diffuse" (i.e., the singular values of these elements are not too large). Here, $\|\cdot\|_{\infty}$ denotes the largest entry in magnitude and $\|\cdot\|_{2}$ is the spectral norm (i.e., the largest singular value).

Remark 2. One can show that

$$
\operatorname{deg}_{\min }(M) \leq \mu(M) \leq \operatorname{deg}_{\max }(M)
$$

where $\operatorname{deg}_{\max }(M)$ is the maximum number of nonzero entries per row/column and $\operatorname{deg}_{\min }(M)$ is the minimum number of nonzero entries per row/column; see Proposition 3 in Chandrasekaran et al. [2011]. Analogously, we can bound $\xi(M)$ as:

$$
\operatorname{inc}(M) \leq \xi(M) \leq 2 \cdot \operatorname{inc}(M)
$$

where $\operatorname{inc}(M)=\max \{\beta($ row-space $(M)), \beta($ column-space $(M))\}$ is the incoherence of the row/column spaces of a matrix $M \in \mathbb{R}^{n \times n}$ with $\beta(S)=\max _{i}\left\|P_{S} e_{i}\right\|_{2}$ as the incoherence of a subspace $S \subset \mathbb{R}^{n}$. Here, $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{R}^{n}, P_{S} denotes the projection onto the subspace S, and $\|\cdot\|_{2}$ is the vector $\ell_{2}-n o r m$.

1 Basic Properties

Proposition 1. If $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<1$ for two matrices $A^{*}, B^{*} \in \mathbb{R}^{n \times n}$, then $\Omega\left(A^{*}\right) \cap T\left(B^{*}\right)=\{0\}$.

We may choose γ properly to have $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<1 / 6$, which guarantees the recoveries of A^{*} and B^{*}. To establish Proposition 1, we leverage the following lemma.

Lemma 2. $\max _{N \in T\left(B^{*}\right),\|N\|_{2} \leq 1}\left\|P_{\Omega\left(A^{*}\right)}(N)\right\|_{2} \leq \mu\left(A^{*}\right) \cdot \xi\left(B^{*}\right)$, where $P_{\Omega\left(A^{*}\right)}(N)$ is the projection of N on the space $\Omega\left(A^{*}\right)$.

Proof of Lemma 2. We have the following sequence of inequalities:

$$
\begin{aligned}
\max _{N \in T\left(B^{*}\right),\|N\|_{2} \leq 1}\left\|P_{\Omega\left(A^{*}\right)}(N)\right\|_{2} & \leq \max _{N \in T\left(B^{*}\right),\|N\|_{2} \leq 1} \mu\left(A^{*}\right)\left\|P_{\Omega\left(A^{*}\right)}(N)\right\|_{\infty} \\
& \leq \max _{N \in T\left(B^{*}\right),\|N\|_{2} \leq 1} \mu\left(A^{*}\right)\|N\|_{\infty} \\
& =\mu\left(A^{*}\right) \cdot \xi\left(B^{*}\right)
\end{aligned}
$$

where the first inequality follows from the definition of $\mu\left(A^{*}\right)$ as $P_{\Omega\left(A^{*}\right)}(N) \in \Omega\left(A^{*}\right)$ and the second inequality is due to $\left\|P_{\Omega\left(A^{*}\right)}(N)\right\|_{\infty} \leq\|N\|_{\infty}$.

Proof of Proposition 1. Suppose that there exists $\tilde{N} \neq 0$ and $\tilde{N} \in \Omega\left(A^{*}\right) \cap T\left(B^{*}\right)$. Given that $\tilde{N} \in T\left(B^{*}\right)$, we can scale \tilde{N} so that $\|\tilde{N}\| \|_{2}=1$. Thus, by Lemma 2 ,

$$
\mu\left(A^{*}\right) \xi\left(B^{*}\right) \geq \max _{N \in T(M),\|N\|_{2} \leq 1}\left\|P_{\Omega\left(A^{*}\right)}(N)\right\|_{2} \geq\left\|P_{\Omega\left(A^{*}\right)}(\tilde{N})\right\|_{2}=1
$$

contradicting to $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<1$. The result follows.

One important consequence of Proposition 1 is the following rank-sparsity uncertainty principle.

Theorem 3 (Rank-Sparsity Uncertainty Principle). For a matrix $M \neq 0$, we have that

$$
\xi(M) \cdot \mu(M) \geq 1
$$

Proof. Notice that $M \in \Omega(M) \cap T(M)$. By Proposition 1, we know that $\xi(M) \cdot \mu(M)<1$, leading to a contradiction.

2 Optimality Condition

Consider the Lagrangian function of (1) as:

$$
\mathcal{L}(A, B, Q)=\gamma\|A\|_{1}+\|B\|_{\star}+\langle Q, C-A-B\rangle .
$$

From the optimality conditions of a convex program, $\left(A^{*}, B^{*}\right)$ is a minimizer of (1) if and only if the dual matrix $Q \in \mathbb{R}^{n \times n}$ satisfies

$$
\begin{equation*}
Q \in \gamma \partial\left\|A^{*}\right\|_{1} \quad \text { and } \quad Q \in \partial\left\|B^{*}\right\|_{\star} \tag{2}
\end{equation*}
$$

Based on the subdifferentials of $\|\cdot\|_{1}$ and $\|\cdot\|_{\star}$, we know that (2) is equivalent to

$$
\begin{equation*}
P_{\Omega\left(A^{*}\right)}(Q)=\gamma \operatorname{sign}\left(A^{*}\right),\left\|P_{\Omega\left(A^{*}\right)}(Q)\right\|_{\infty} \leq \gamma \quad \text { and } \quad P_{T\left(B^{*}\right)}(Q)=U V^{T},\left\|P_{T\left(B^{*}\right)^{\perp}}(Q)\right\|_{2} \leq 1 \tag{3}
\end{equation*}
$$

where $U, V \in \mathbb{R}^{n \times k}$ comes from $B^{*}=U \Sigma V^{T}$. (Recall that $\partial\left\|B^{*}\right\|_{\star}=\left\{U V^{T}+W: U^{T} W=W V^{T}=0\right\}$.) Notice that (3) are necessary and sufficient conditions for $\left(A^{*}, B^{*}\right)$ be a minimizer of (1). To ensure the uniqueness for the solution to (1), we need to tighten the conditions in (2) and (3) as the following proposition.

Proposition 4 (Uniqueness of the Optimal Solution). Suppose that $C=A^{*}+B^{*}$. Then, $(\hat{A}, \hat{B})=\left(A^{*}, B^{*}\right)$ is the unique minimizer of (1) if the following conditions are satisfied:

1. $\Omega\left(A^{*}\right) \cap T\left(B^{*}\right)=\{0\}$.
2. There exists a dual matrix $Q \in \mathbb{R}^{n \times n}$ such that
(a) $P_{T\left(B^{*}\right)}(Q)=U V^{T}$;
(b) $P_{\Omega\left(A^{*}\right)}(Q)=\gamma \cdot \operatorname{sign}\left(A^{*}\right)$;
(c) $\left\|P_{T\left(B^{*}\right)^{\perp}}(Q)\right\|_{2}<1$;
(d) $\left\|P_{\Omega\left(A^{*}\right)^{c}}(Q)\right\|_{\infty}<\gamma$.

Proof of Proposition 4. Notice that $\left(A^{*}, B^{*}\right)$ is an optimum by the condition 2 in Proposition 4. To avoid cluttered notation, we let $\Omega=\Omega\left(A^{*}\right), T=T\left(B^{*}\right), \Omega^{c}=\Omega\left(A^{*}\right)^{c}$, and $T_{\perp}\left(B^{*}\right)=T^{\perp}$.

Suppose that there is another feasible solution $\left(A^{*}+N_{A}, B^{*}+N_{B}\right)$ that also minimizes (1). Since $A^{*}+B^{*}=$ $C=\left(A^{*}+N_{A}\right)+\left(B^{*}+N_{B}\right)$, we must have $N_{A}+N_{B}=0$. For any subgradient $\left(Q_{A}, Q_{B}\right)$ of the function $\gamma\|A\|_{1}+\|B\|_{\star}$ at $\left(A^{*}, B^{*}\right)$, we have that

$$
\begin{equation*}
\gamma\left\|A^{*}+N_{A}\right\|_{1}+\left\|B^{*}+N_{B}\right\|_{\star} \geq \gamma\left\|A^{*}\right\|_{1}+\left\|B^{*}\right\|_{\star}+\left\langle Q_{A}, N_{A}\right\rangle+\left\langle Q_{B}, N_{B}\right\rangle . \tag{4}
\end{equation*}
$$

Since $\left(Q_{A}, Q_{B}\right)$ is a subgradient of the function $\gamma\|A\|_{1}+\|B\|_{\star}$ at $\left(A^{*}, B^{*}\right)$, we must have from (3) that

- $Q_{A}=\gamma \cdot \operatorname{sign}\left(A^{*}\right)+P_{\Omega^{c}}\left(Q_{A}\right)$ with $\left\|P_{\Omega^{c}}\left(Q_{A}\right)\right\|_{\infty} \leq \gamma$;
- $Q_{B}=U V^{T}+P_{T^{\perp}}\left(Q_{B}\right)$ with $\left\|P_{T^{\perp}}\left(Q_{B}\right)\right\|_{2} \leq 1$.

Figure 1: Geometric interpretation of optimality conditions: the existence of a dual matrix Q.

Thus, we calculate that

$$
\begin{aligned}
\left\langle Q_{A}, N_{A}\right\rangle & =\left\langle\gamma \cdot \operatorname{sign}\left(A^{*}\right)+P_{\Omega^{c}}\left(Q_{A}\right), N_{A}\right\rangle \\
& =\left\langle P_{\Omega}(Q)+P_{\Omega^{c}}\left(Q_{A}\right), N_{A}\right\rangle \quad \text { using }(\mathrm{b}) \text { in Condition } 2 \\
& =\left\langle P_{\Omega^{c}}\left(Q_{A}\right)-P_{\Omega^{c}}(Q), N_{A}\right\rangle+\left\langle Q, N_{A}\right\rangle \quad \text { by } P_{\Omega}(Q)=Q-P_{\Omega^{c}}(Q) .
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
\left\langle Q_{B}, N_{B}\right\rangle & =\left\langle U V^{T}+P_{T^{\perp}}\left(Q_{B}\right), N_{B}\right\rangle \\
& =\left\langle P_{T}(Q)+P_{T^{\perp}}\left(Q_{B}\right), N_{B}\right\rangle \quad \text { using (a) in Condition } 2 \\
& =\left\langle P_{T^{\perp}}\left(Q_{B}\right)-P_{T^{\perp}}(Q), N_{B}\right\rangle+\left\langle Q, N_{B}\right\rangle \quad \text { by } P_{T}(Q)=Q-P_{T^{\perp}}(Q) .
\end{aligned}
$$

Adding the above two equalities together gives us that

$$
\begin{align*}
\left\langle Q_{A}, N_{A}\right\rangle+\left\langle Q_{B}, N_{B}\right\rangle & =\left\langle P_{\Omega^{c}}\left(Q_{A}\right)-P_{\Omega^{c}}(Q), N_{A}\right\rangle+\left\langle Q, N_{A}\right\rangle+\left\langle P_{T^{\perp}}\left(Q_{B}\right)-P_{T^{\perp}}(Q), N_{B}\right\rangle+\left\langle Q, N_{B}\right\rangle \\
& =\left\langle P_{\Omega^{c}}\left(Q_{A}\right)-P_{\Omega^{c}}(Q), P_{\Omega^{c}}\left(N_{A}\right)\right\rangle+\left\langle P_{T^{\perp}}\left(Q_{B}\right)-P_{T^{\perp}}(Q), P_{T^{\perp}}\left(N_{B}\right)\right\rangle, \tag{5}
\end{align*}
$$

where we use the fact that $N_{A}+N_{B}=0$ and the projection matrices $P_{\Omega^{c}}, P_{T^{\perp}}$ are idempotent.
Given that any subgradient $\left(Q_{A}, Q_{B}\right)$ of the function $\gamma\|A\|_{1}+\|B\|_{\star}$ at $\left(A^{*}, B^{*}\right)$ will satisfy the above equality, we can choose $\left(Q_{A}, Q_{B}\right)$ as follows:

- Take Q_{A} so that $P_{\Omega^{c}}\left(Q_{A}\right)=\gamma \cdot \operatorname{sign}\left(P_{\Omega^{c}}\left(N_{A}\right)\right)$ with $\left\|P_{\Omega^{c}}\left(Q_{A}\right)\right\|_{\infty} \leq \gamma$ and $\left\langle P_{\Omega^{c}}\left(Q_{A}\right), P_{\Omega^{c}}\left(N_{A}\right)\right\rangle=$ $\gamma\left\|P_{\Omega^{c}}\left(N_{A}\right)\right\|_{1}$.
- Given the singular value decomposition of $P_{T^{\perp}}\left(N_{B}\right)=\tilde{U} \tilde{\Sigma} \tilde{V}^{T}$, we choose Q_{B} so that $P_{T^{\perp}}\left(Q_{B}\right)=\tilde{U} \tilde{V}^{T}$ with $\left\|P_{T^{\perp}}\left(Q_{B}\right)\right\|_{2}=1$ and $\left\langle P_{T^{\perp}}\left(Q_{B}\right), P_{T^{\perp}}\left(N_{B}\right)\right\rangle=\left\|P_{T^{\perp}}\left(N_{B}\right)\right\|_{\star}$.

Under this choice of $\left(Q_{A}, Q_{B}\right)$, we simplify (5) as:

$$
\left\langle Q_{A}, N_{A}\right\rangle+\left\langle Q_{B}, N_{B}\right\rangle=\left\langle P_{\Omega^{c}}\left(Q_{A}\right)-P_{\Omega^{c}}(Q), P_{\Omega^{c}}\left(N_{A}\right)\right\rangle+\left\langle P_{T^{\perp}}\left(Q_{B}\right)-P_{T^{\perp}}(Q), P_{T^{\perp}}\left(N_{B}\right)\right\rangle
$$

$$
\begin{aligned}
& \geq\left(\gamma-\left\|P_{\Omega^{c}}(Q)\right\|_{\infty}\right)\left\|P_{\Omega^{c}}\left(N_{A}\right)\right\|_{1}+\left(1-\left\|P_{T^{\perp}}(Q)\right\|_{2}\right)\left\|P_{T^{\perp}}\left(N_{B}\right)\right\|_{\star} \\
& >0
\end{aligned}
$$

unless $P_{\Omega^{c}}\left(N_{A}\right)=P_{T^{\perp}}\left(N_{B}\right)=0$, where we obtain the last positivity based on (c) and (d) in Condition 2. However, if $P_{\Omega^{c}}\left(N_{A}\right) \neq 0$ or $P_{T^{\perp}}\left(N_{B}\right) \neq 0$, we know from (4) that

$$
\gamma\left\|A^{*}+N_{A}\right\|_{1}+\left\|B^{*}+N_{B}\right\|_{\star}>\gamma\left\|A^{*}\right\|_{1}+\left\|B^{*}\right\|_{\star}
$$

which violates the optimality of $\left(A^{*}+N_{A}, B^{*}+N_{B}\right)$. Now, when $P_{\Omega^{c}}\left(N_{A}\right)=P_{T^{\perp}}\left(N_{B}\right)=0, P_{\Omega}\left(N_{A}\right)+$ $P_{T}\left(N_{B}\right)=0$ as well because of $N_{A}+N_{B}=0$. In other words,

$$
P_{\Omega}\left(N_{A}\right)=-P_{T}\left(N_{B}\right) .
$$

This is only possible if $P_{\Omega}\left(N_{A}\right)=P_{T}\left(N_{B}\right)=0$ because $\Omega \cap T=\{0\}$ by Condition 1, which in turn implies that $N_{A}=N_{B}=0$. The proof of uniqueness is completed.

While Proposition 4 sheds light on the sufficient conditions for uniquely recovering $\left(A^{*}, B^{*}\right)$, we now discuss the existence of an appropriate dual matrix Q entailed by Proposition 4. From Proposition 1, we already know that Condition 1 in Proposition $4\left(\Omega\left(A^{*}\right) \cap T\left(B^{*}\right)=\{0\}\right)$ is valid when $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<1$. If we slightly strengthen the condition as $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<\frac{1}{6}$, there will be a dual matrix Q satisfying the requirements in Condition 2 of Proposition 4 as well.

Theorem 5. Given $C=A^{*}+B^{*}$ with $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<\frac{1}{6}$, the unique minimizer (\hat{A}, \hat{B}) of (1) will be $\left(A^{*}, B^{*}\right)$ for the following range of γ :

$$
\gamma \in\left(\frac{\xi\left(B^{*}\right)}{1-4 \mu\left(A^{*}\right) \xi\left(B^{*}\right)}, \frac{1-3 \mu\left(A^{*}\right) \xi\left(B^{*}\right)}{\mu\left(A^{*}\right)}\right)
$$

Specifically, $\gamma=\frac{\left[3 \xi\left(B^{*}\right)\right]^{p}}{\left[2 \mu\left(A^{*}\right)\right]^{1-p}}$ for any choice of $p \in[0,1]$ is always inside the above range and thus guarantees exact recovery of $\left(A^{*}, B^{*}\right)$.

The detailed proof of Theorem 5 can be found in Theorem 2 of [chandrasekaran2011rank]. The high-level idea is that we consider candidates for the dual matrix Q in the direct sum $\Omega\left(A^{*}\right) \oplus T\left(B^{*}\right)$ of the tangent spaces. Since $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<\frac{1}{6}, \Omega\left(A^{*}\right) \cap T\left(B^{*}\right)=\{0\}$ by Proposition 1 and there exists a unique element $\hat{Q} \in \Omega\left(A^{*}\right) \oplus T\left(B^{*}\right)$ satisfying $P_{T\left(B^{*}\right)}(\hat{Q})=U V^{T}$ and $P_{\Omega\left(A^{*}\right)}(\hat{Q})=\gamma \cdot \operatorname{sign}\left(A^{*}\right)$. The proof proceeds by showing that if $\mu\left(A^{*}\right) \xi\left(B^{*}\right)<\frac{1}{6}$, then the projections of \hat{Q} onto the orthogonal spaces $\Omega\left(A^{*}\right)^{c}$ and $T\left(B^{*}\right)^{\perp}$ are small, and Condition 2 of Proposition 4 is thus satisfied.

Other further reading for the course:

- Chandrasekaran, V., Recht, B., Parrilo, P. A., \& Willsky, A. S. (2012). The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 12, 805-849.

References

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Sparse and low-rank matrix decompositions. IFAC Proceedings Volumes, 42(10):1493-1498, 2009.
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572-596, 2011.
R. Hartshorne. Algebraic geometry, volume 52. Springer Science \& Business Media, 2013.
L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49-95, 1996.

[^0]: ${ }^{1}$ Recall that an algebraic variety is defined as the zero set of a system of polynomial equations [Hartshorne, 2013].

