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Lecture 16: Rank-Sparsity Matrix Decomposition
Lecturer: Armeen Taeb Scribe: Yikun Zhang

Parts of the notes are based on Chandrasekaran et al. [2009, 2011].

Setting: Let C = A∗ + B∗ with A∗ ∈ Rn×n being a sparse matrix and B∗ ∈ Rn×n a low-rank matrix,
where both A∗ and B∗ are unknown. In this notes, we restrict ourselves to square matrices in Rn×n, but
the analysis can be extended to rectangular matrices Rn1×n2 if we simply replace n by max {n1, n2}.

Goal: Given C, we want to recover A∗ and B∗ without any prior information about the sparsity pattern of
A∗ or the rank/singular vectors of B∗.

Solution: Consider the following optimization problem:

argmin
A,B

[γ ||A||1 + ||B||⋆]

subject to A+B = C.
(1)

Here, ||A||1 =
∑

i,j |Aij | is the elementwise L1-norm of a matrix A, ||B||⋆ =
∑

k σk(B) is the nuclear norm,
which is the sum of the singular values of B, and γ is a tuning parameter that provides a trade-off between
the low-rank and sparse components.

Remark 1. This optimization problem (1) is convex and can be written as a semi-definite program (SDP;
Vandenberghe and Boyd 1996), for which there exist polynomial-time general- purpose solvers; see Appendix
A in Chandrasekaran et al. [2011]. Under a mild tightening of the conditions for fundamental identifiability,
the minimizer of (1) is unique and recover A∗, B∗. Essentially, these conditions require that the sparse
matrix does not have support concentrated within a single row/column, while the low-rank matrix does not
have row/column spaces closely aligned with the coordinate axes [Chandrasekaran et al., 2009].

Notations: We begin by introducing several algebraic varieties1. The set of rank-constrained matrices is
defined as:

P(k) =
{
M ∈ Rn×n : rank(M) ≤ k

}
.

This is an algebraic variety with dimension k(2n − k) = n2 − (n − k)2, since it can be defined through the
vanishing of all (k + 1) × (k + 1) minors of the matrix M . Let M = UDV T ∈ Rn×n be the singular value
decomposition of M with U, V ∈ Rn×k and rank(M) = k. The tangent space at M is defined as:

T (M) =
{
UXT + Y V T : X,Y ∈ Rn×n

}
,

which consists of the span of all matrices with either the same row space as M or the same column space as
M . We also define

Ω(M) =
{
N ∈ Rn×n : support(N) ⊆ support(M)

}
,

which is the tangent space of {M ∈ Rn×n : |support(M)| ≤ m}. Consider the following two quantities:

ξ(M) = max
N∈T (M),||N ||2≤1

||N ||∞

1Recall that an algebraic variety is defined as the zero set of a system of polynomial equations [Hartshorne, 2013].
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which will be small when (appropriately scaled) elements of the tangent space T (M) are “diffuse” (i.e., these
elements are not too sparse), and

µ(M) = max
N∈Ω(M),||N ||∞≤1

||N ||2

which will be small when the spectrum of any matrix in Ω(M) is “diffuse” (i.e., the singular values of these
elements are not too large). Here, ||·||∞ denotes the largest entry in magnitude and ||·||2 is the spectral norm
(i.e., the largest singular value).

Remark 2. One can show that
degmin(M) ≤ µ(M) ≤ degmax(M),

where degmax(M) is the maximum number of nonzero entries per row/column and degmin(M) is the minimum
number of nonzero entries per row/column; see Proposition 3 in Chandrasekaran et al. [2011]. Analogously,
we can bound ξ(M) as:

inc(M) ≤ ξ(M) ≤ 2 · inc(M),

where inc(M) = max {β (row-space(M)) , β (column-space(M))} is the incoherence of the row/column spaces
of a matrix M ∈ Rn×n with β(S) = maxi ||PSei||2 as the incoherence of a subspace S ⊂ Rn. Here, {e1, ..., en}
is the standard basis of Rn, PS denotes the projection onto the subspace S, and ||·||2 is the vector ℓ2-norm.

1 Basic Properties

Proposition 1. If µ(A∗)ξ(B∗) < 1 for two matrices A∗, B∗ ∈ Rn×n, then Ω(A∗) ∩ T (B∗) = {0}.

We may choose γ properly to have µ(A∗)ξ(B∗) < 1/6, which guarantees the recoveries of A∗ and B∗. To
establish Proposition 1, we leverage the following lemma.

Lemma 2. max
N∈T (B∗),||N ||2≤1

∣∣∣∣PΩ(A∗)(N)
∣∣∣∣
2
≤ µ(A∗) · ξ(B∗), where PΩ(A∗)(N) is the projection of N on the

space Ω(A∗).

Proof of Lemma 2. We have the following sequence of inequalities:

max
N∈T (B∗),||N ||2≤1

∣∣∣∣PΩ(A∗)(N)
∣∣∣∣
2
≤ max

N∈T (B∗),||N ||2≤1
µ(A∗)

∣∣∣∣PΩ(A∗)(N)
∣∣∣∣
∞

≤ max
N∈T (B∗),||N ||2≤1

µ(A∗) ||N ||∞

= µ(A∗) · ξ(B∗),

where the first inequality follows from the definition of µ(A∗) as PΩ(A∗)(N) ∈ Ω(A∗) and the second inequality

is due to
∣∣∣∣PΩ(A∗)(N)

∣∣∣∣
∞ ≤ ||N ||∞.

Proof of Proposition 1. Suppose that there exists Ñ ̸= 0 and Ñ ∈ Ω(A∗) ∩ T (B∗). Given that Ñ ∈ T (B∗),

we can scale Ñ so that
∣∣∣∣∣∣Ñ ∣∣∣∣∣∣

2
= 1. Thus, by Lemma 2,

µ(A∗)ξ(B∗) ≥ max
N∈T (M),||N ||2≤1

∣∣∣∣PΩ(A∗)(N)
∣∣∣∣
2
≥

∣∣∣∣∣∣PΩ(A∗)(Ñ)
∣∣∣∣∣∣
2
= 1

contradicting to µ(A∗)ξ(B∗) < 1. The result follows.

One important consequence of Proposition 1 is the following rank-sparsity uncertainty principle.
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Theorem 3 (Rank-Sparsity Uncertainty Principle). For a matrix M ̸= 0, we have that

ξ(M) · µ(M) ≥ 1.

Proof. Notice that M ∈ Ω(M) ∩ T (M). By Proposition 1, we know that ξ(M) · µ(M) < 1, leading to a
contradiction.

2 Optimality Condition

Consider the Lagrangian function of (1) as:

L(A,B,Q) = γ ||A||1 + ||B||⋆ + ⟨Q,C −A−B⟩.

From the optimality conditions of a convex program, (A∗, B∗) is a minimizer of (1) if and only if the dual
matrix Q ∈ Rn×n satisfies

Q ∈ γ∂ ||A∗||1 and Q ∈ ∂ ||B∗||⋆ . (2)

Based on the subdifferentials of ||·||1 and ||·||⋆, we know that (2) is equivalent to

PΩ(A∗)(Q) = γsign(A∗),
∣∣∣∣PΩ(A∗)(Q)

∣∣∣∣
∞ ≤ γ and PT (B∗)(Q) = UV T ,

∣∣∣∣PT (B∗)⊥(Q)
∣∣∣∣
2
≤ 1, (3)

where U, V ∈ Rn×k comes from B∗ = UΣV T . (Recall that ∂ ||B∗||⋆ =
{
UV T +W : UTW = WV T = 0

}
.)

Notice that (3) are necessary and sufficient conditions for (A∗, B∗) be a minimizer of (1). To ensure the
uniqueness for the solution to (1), we need to tighten the conditions in (2) and (3) as the following proposition.

Proposition 4 (Uniqueness of the Optimal Solution). Suppose that C = A∗+B∗. Then,
(
Â, B̂

)
= (A∗, B∗)

is the unique minimizer of (1) if the following conditions are satisfied:

1. Ω(A∗) ∩ T (B∗) = {0}.

2. There exists a dual matrix Q ∈ Rn×n such that

(a) PT (B∗)(Q) = UV T ;

(b) PΩ(A∗)(Q) = γ · sign(A∗);

(c)
∣∣∣∣PT (B∗)⊥(Q)

∣∣∣∣
2
< 1;

(d)
∣∣∣∣PΩ(A∗)c(Q)

∣∣∣∣
∞ < γ.

Proof of Proposition 4. Notice that (A∗, B∗) is an optimum by the condition 2 in Proposition 4. To avoid
cluttered notation, we let Ω = Ω(A∗), T = T (B∗),Ωc = Ω(A∗)c, and T⊥(B

∗) = T⊥.

Suppose that there is another feasible solution (A∗+NA, B
∗+NB) that also minimizes (1). Since A∗+B∗ =

C = (A∗ +NA) + (B∗ +NB), we must have NA +NB = 0. For any subgradient (QA, QB) of the function
γ ||A||1 + ||B||⋆ at (A∗, B∗), we have that

γ ||A∗ +NA||1 + ||B∗ +NB ||⋆ ≥ γ ||A∗||1 + ||B∗||⋆ + ⟨QA, NA⟩+ ⟨QB , NB⟩. (4)

Since (QA, QB) is a subgradient of the function γ ||A||1 + ||B||⋆ at (A∗, B∗), we must have from (3) that

• QA = γ · sign(A∗) + PΩc(QA) with ||PΩc(QA)||∞ ≤ γ;

• QB = UV T + PT⊥(QB) with ||PT⊥(QB)||2 ≤ 1.
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Figure 1: Geometric interpretation of optimality conditions: the existence of a dual matrix Q.

Thus, we calculate that

⟨QA, NA⟩ = ⟨γ · sign(A∗) + PΩc(QA), NA⟩
= ⟨PΩ(Q) + PΩc(QA), NA⟩ using (b) in Condition 2

= ⟨PΩc(QA)− PΩc(Q), NA⟩+ ⟨Q,NA⟩ by PΩ(Q) = Q− PΩc(Q).

Similarly, we have that

⟨QB , NB⟩ = ⟨UV T + PT⊥(QB), NB⟩
= ⟨PT (Q) + PT⊥(QB), NB⟩ using (a) in Condition 2

= ⟨PT⊥(QB)− PT⊥(Q), NB⟩+ ⟨Q,NB⟩ by PT (Q) = Q− PT⊥(Q).

Adding the above two equalities together gives us that

⟨QA, NA⟩+ ⟨QB , NB⟩ = ⟨PΩc(QA)− PΩc(Q), NA⟩+ ⟨Q,NA⟩+ ⟨PT⊥(QB)− PT⊥(Q), NB⟩+ ⟨Q,NB⟩
= ⟨PΩc(QA)− PΩc(Q), PΩc(NA)⟩+ ⟨PT⊥(QB)− PT⊥(Q), PT⊥(NB)⟩,

(5)

where we use the fact that NA +NB = 0 and the projection matrices PΩc , PT⊥ are idempotent.

Given that any subgradient (QA, QB) of the function γ ||A||1 + ||B||⋆ at (A∗, B∗) will satisfy the above
equality, we can choose (QA, QB) as follows:

• Take QA so that PΩc(QA) = γ · sign(PΩc(NA)) with ||PΩc(QA)||∞ ≤ γ and ⟨PΩc(QA), PΩc(NA)⟩ =
γ ||PΩc(NA)||1.

• Given the singular value decomposition of PT⊥(NB) = Ũ Σ̃Ṽ T , we choose QB so that PT⊥(QB) = Ũ Ṽ T

with ||PT⊥(QB)||2 = 1 and ⟨PT⊥(QB), PT⊥(NB)⟩ = ||PT⊥(NB)||⋆.

Under this choice of (QA, QB), we simplify (5) as:

⟨QA, NA⟩+ ⟨QB , NB⟩ = ⟨PΩc(QA)− PΩc(Q), PΩc(NA)⟩+ ⟨PT⊥(QB)− PT⊥(Q), PT⊥(NB)⟩
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≥ (γ − ||PΩc(Q)||∞) ||PΩc(NA)||1 + (1− ||PT⊥(Q)||2) ||PT⊥(NB)||⋆
> 0

unless PΩc(NA) = PT⊥(NB) = 0, where we obtain the last positivity based on (c) and (d) in Condition 2.
However, if PΩc(NA) ̸= 0 or PT⊥(NB) ̸= 0, we know from (4) that

γ ||A∗ +NA||1 + ||B∗ +NB ||⋆ > γ ||A∗||1 + ||B∗||⋆ ,

which violates the optimality of (A∗ + NA, B
∗ + NB). Now, when PΩc(NA) = PT⊥(NB) = 0, PΩ(NA) +

PT (NB) = 0 as well because of NA +NB = 0. In other words,

PΩ(NA) = −PT (NB).

This is only possible if PΩ(NA) = PT (NB) = 0 because Ω ∩ T = {0} by Condition 1, which in turn implies
that NA = NB = 0. The proof of uniqueness is completed.

While Proposition 4 sheds light on the sufficient conditions for uniquely recovering (A∗, B∗), we now discuss
the existence of an appropriate dual matrix Q entailed by Proposition 4. From Proposition 1, we already
know that Condition 1 in Proposition 4 (Ω(A∗)∩T (B∗) = {0}) is valid when µ(A∗)ξ(B∗) < 1. If we slightly
strengthen the condition as µ(A∗)ξ(B∗) < 1

6 , there will be a dual matrix Q satisfying the requirements in
Condition 2 of Proposition 4 as well.

Theorem 5. Given C = A∗+B∗ with µ(A∗)ξ(B∗) < 1
6 , the unique minimizer

(
Â, B̂

)
of (1) will be (A∗, B∗)

for the following range of γ:

γ ∈
(

ξ(B∗)

1− 4µ(A∗)ξ(B∗)
,
1− 3µ(A∗)ξ(B∗)

µ(A∗)

)
.

Specifically, γ = [3ξ(B∗)]p

[2µ(A∗)]1−p for any choice of p ∈ [0, 1] is always inside the above range and thus guarantees

exact recovery of (A∗, B∗).

The detailed proof of Theorem 5 can be found in Theorem 2 of [chandrasekaran2011rank]. The high-level
idea is that we consider candidates for the dual matrix Q in the direct sum Ω(A∗) ⊕ T (B∗) of the tangent
spaces. Since µ(A∗)ξ(B∗) < 1

6 , Ω(A
∗) ∩ T (B∗) = {0} by Proposition 1 and there exists a unique element

Q̂ ∈ Ω(A∗) ⊕ T (B∗) satisfying PT (B∗)(Q̂) = UV T and PΩ(A∗)(Q̂) = γ · sign(A∗). The proof proceeds by

showing that if µ(A∗)ξ(B∗) < 1
6 , then the projections of Q̂ onto the orthogonal spaces Ω(A∗)c and T (B∗)⊥

are small, and Condition 2 of Proposition 4 is thus satisfied.

Other further reading for the course:

• Chandrasekaran, V., Recht, B., Parrilo, P. A., & Willsky, A. S. (2012). The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12, 805-849.
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