STAT 538: Statistical Learning: Modeling, Prediction, And Computing Winter 2023

Lecture 16: Rank-Sparsity Matrix Decomposition

Lecturer: Armeen Taeb Scribe: Yikun Zhang

Parts of the notes are based on Chandrasekaran et al. [2009, 2011].

Setting: Let C' = A* + B* with A* € R™*" being a sparse matrix and B* € R"*" a low-rank matrix,
where both A* and B* are unknown. In this notes, we restrict ourselves to square matrices in R™*™, but
the analysis can be extended to rectangular matrices R™ *"2 if we simply replace n by max {ni,na}.

Goal: Given C, we want to recover A* and B* without any prior information about the sparsity pattern of
A* or the rank/singular vectors of B*.

Solution: Consider the following optimization problem:

argmin [ |[Al|, + |[B]],]
A,B

(1)
subject to A+ B = C.

Here, ||Al[; = >, ;|Asj| is the elementwise Li-norm of a matrix A, ||B||, = >, ox(B) is the nuclear norm,
which is the sum of the singular values of B, and ~ is a tuning parameter that provides a trade-off between
the low-rank and sparse components.

Remark 1. This optimization problem (1) is convex and can be written as a semi-definite program (SDP;
Vandenberghe and Boyd 1996), for which there exist polynomial-time general- purpose solvers; see Appendix
A in Chandrasekaran et al. [2011]. Under a mild tightening of the conditions for fundamental identifiability,
the minimizer of (1) is unique and recover A*, B*. Essentially, these conditions require that the sparse
matriz does not have support concentrated within a single row/column, while the low-rank matriz does not
have row/column spaces closely aligned with the coordinate azes [Chandrasekaran et al., 2009].

L The set of rank-constrained matrices is

Notations: We begin by introducing several algebraic varieties
defined as:
P(k)={M € R"*" : rank(M) < k} .

This is an algebraic variety with dimension k(2n — k) = n? — (n — k)2, since it can be defined through the

vanishing of all (k+ 1) x (k + 1) minors of the matrix M. Let M = UDVT € R" " be the singular value
decomposition of M with U,V € R"*¥ and rank(M) = k. The tangent space at M is defined as:

T(M)={UX"+YVT: XY e R"™"},

which consists of the span of all matrices with either the same row space as M or the same column space as
M. We also define
Q(M) = {N € R™" : support(N) C support(M)},

which is the tangent space of {M € R™*™ : |support(M)| < m}. Consider the following two quantities:

§M)=  max [N

~ NeT(M),||N|,<1 oo

1Recall that an algebraic variety is defined as the zero set of a system of polynomial equations [Hartshorne, 2013].
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which will be small when (appropriately scaled) elements of the tangent space T'(M) are “diffuse” (i.e., these
elements are not too sparse), and
M) = max N
(M) el < [V,
which will be small when the spectrum of any matrix in Q(M) is “diffuse” (i.e., the singular values of these
elements are not too large). Here, ||-|| , denotes the largest entry in magnitude and ||-||, is the spectral norm
(i.e., the largest singular value).

Remark 2. One can show that
degmin(M) S N(M) g degmax(M)a

where deg, .. (M) is the mazimum number of nonzero entries per row/column and deg, ;, (M) is the minimum
number of nonzero entries per row/column; see Proposition 8 in Chandrasekaran et al. [2011]. Analogously,
we can bound E(M) as:

inc(M) < €(M) < 2 inc(M),

where inc(M) = max {3 (row-space(M)) , B (column-space(M))} is the incoherence of the row/column spaces
of a matriz M € R™*"™ with (S) = max; ||Pse;||, as the incoherence of a subspace S C R™. Here, {e1,...,en}
is the standard basis of R"™, Pg denotes the projection onto the subspace S, and ||-||, is the vector la-norm.

1 Basic Properties

Proposition 1. If p(A*)§(B*) < 1 for two matrices A*, B* € R™*™, then Q(A*)NT(B*) = {0}.

We may choose 7 properly to have u(A*)¢(B*) < 1/6, which guarantees the recoveries of A* and B*. To
establish Proposition 1, we leverage the following lemma.

Lemma 2. NeT(BIP)E,L\)\{N\\le HPQ(A*)(N)H2 < u(A*) - &£(B*), where Po(a=)(N) is the projection of N on the

space Q(A*).

Proof of Lemma 2. We have the following sequence of inequalities:

NeT(B@fffNHQQHPWA) )], < Ner 1(A) |[Pacan (N)|]

< ma AN ||N
_NeT(B*M}\(NHQSl'U( )N

= p(A") -&(BY),
where the first inequality follows from the definition of 1(A*) as Po(a+)(N) € ©2(A*) and the second inequality
is due to || Poaey(N)]| < [INV]] - O

Proof of Proposition 1. Suppose that there exists N # 0 and N € Q(A*) N T(B*). Given that N € T(B*),
we can scale N so that HNH2 = 1. Thus, by Lemma 2,

ANE(B*) > Poann (N >HP*NH:1
p(A)E( )_NeT(A%?fNHQQH a4 (N)|], = || Pacas( )2

contradicting to p(A*)¢(B*) < 1. The result follows. O

One important consequence of Proposition 1 is the following rank-sparsity uncertainty principle.
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Theorem 3 (Rank-Sparsity Uncertainty Principle). For a matriz M # 0, we have that

E(M) - (M) > 1.

Proof. Notice that M € Q(M)NT(M). By Proposition 1, we know that £&(M) - (M) < 1, leading to a
contradiction. O

2 Optimality Condition

Consider the Lagrangian function of (1) as:
L(A,B,Q) =~ |lAll, +[IB]l, + (@, C - A - B).

From the optimality conditions of a convex program, (A*, B*) is a minimizer of (1) if and only if the dual
matrix @ € R™*" satisfies

Qe[ Ay and Q€ dBl,. (2)
Based on the subdifferentials of ||-||; and ||-||,, we know that (2) is equivalent to
Poa)(Q) = vsign(A%), || Poan (Q)]| <7 and  Prs+)(Q) = UV, ||Prp-:(Q)]], <1,  (3)

where U,V € R comes from B* = USVT. (Recall that 9||B*||, = {UVT + W : UTW = WVT =0}.)
Notice that (3) are necessary and sufficient conditions for (A*, B*) be a minimizer of (1). To ensure the
uniqueness for the solution to (1), we need to tighten the conditions in (2) and (3) as the following proposition.

Proposition 4 (Uniqueness of the Optimal Solution). Suppose that C = A*+ B*. Then, (/1, B) = (A*, B)

is the unique minimizer of (1) if the following conditions are satisfied:
1. Q(A*)NT(B*) = {0}.
2. There exists a dual matriz Q € R™ ™ such that

(a) PT(B Q) = UVT,

(b) Poa-(Q) =~- Slgn(A*)
(e) ||Pras)- (@], <

(d) ||Paas)-(Q)|] . <

Proof of Proposition 4. Notice that (A*, B*) is an optimum by the condition 2 in Proposition 4. To avoid
cluttered notation, we let Q = Q(A*), T = T(B*), Q¢ = Q(A*)¢, and T (B*) = T+.

Suppose that there is another feasible solution (A* + N4, B* + Np) that also minimizes (1). Since A*+ B* =
C = (A*+ Na) + (B* + Np), we must have Ng + Np = 0. For any subgradient (Q4,@p) of the function
~v|All; + 1Bl at (A*, B*), we have that

VA" + Nally +[1B" + Nal|, Z v [[A"[ly + [ B[], + (Qa, Na) + (@B, N). (4)
Since (Qa,@p) is a subgradient of the function v [|A||; + || B]|, at (A*, B*), we must have from (3) that

o Q4 =7 sign(A*) + Poc(Qa) with |[Poc(Qa)llo < 3
o QB = UVT +PTJ_(QB) with HPTJ-(QB)HQ <1
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Figure 1: Geometric interpretation of optimality conditions: the existence of a dual matrix Q.

Thus, we calculate that
(Qa, Na) = (v -sign(A”) + Poc(Qa), Na)
= (Po(Q) + Pac(Qa), Na) using (b) in Condition 2
= (Pac(Qa) — Pac(Q), Na) +(Q, Na) by Pa(Q) = Q — Po:(Q).

Similarly, we have that

(Qp,Np) = (UVT + Pr.(Qgp), NB)
={(Pr(Q)+ Pr.(Qp),Ng) using (a) in Condition 2

= (Pr(Qp) — Pr+(Q),Np) +(Q,Np) by Pr(Q)=Q — Pr.(Q).
Adding the above two equalities together gives us that

(Qa,Na) +(QB,Np) = (Pa:(Qa) — Pa:(Q), Na) + (Q, Na) + (Pr. (@) — Pr.(Q), Np) +(Q, Np)
= (Pac(Qa) — Pae(Q), Poe(Na)) + (Pr.(QB) — Pro(Q), Pro(NB)),

where we use the fact that N4 + Ng = 0 and the projection matrices Py, Pr1 are idempotent.

()

Given that any subgradient (Qa,Q@Qp) of the function ~||A||; + ||B||, at (A%, B*) will satisfy the above
equality, we can choose (Qa,Q@p) as follows:

o Take QA so that PQc(QA) = 7" Sign(PQc(NA)> with ||PQC(QA)||OO g Yy and <PQc(QA>,PQc(NA)> =
Y[ Pae (Na)ll;-

e Given the singular value decomposition of Py (Ng) = ULV, we choose Qp so that Pr. (Qg) = UVT
with [|Pro(@B)ll; = 1 and (Pr.(QB), Pr.(NB)) = [|Pr+ (Nb)|l,-

Under this choice of (Qa,@p), we simplify (5) as:

(Qa,Na) + (@B, NB) = (Pac(Qa) — Pac(Q), Pac(Na)) + (Pro(QB) — Pr.(Q), Pr.(Np))
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> (v = [[Pac(Q)lloo) [1Pac (Na) [y + (1 = || Pro (@)II) [[Pre (NB)II,
>0

unless Pqe(Na) = Ppo(Np) = 0, where we obtain the last positivity based on (c) and (d) in Condition 2.
However, if Pqe(N4) # 0 or Ppi(Np) # 0, we know from (4) that

VIA®+ Nally +|B* + Npll, > v [[A%][, + 1B, ,

which violates the optimality of (A* + N4, B* + Ng). Now, when Poc(Na) = Pri(Np) = 0, Pa(Na) +
Pr(Np) =0 as well because of Ng + N = 0. In other words,

Po(Na) = —Pr(Np).

This is only possible if Po(Na) = Pr(Np) = 0 because Q@ NT = {0} by Condition 1, which in turn implies
that Ny = Np = 0. The proof of uniqueness is completed. O

While Proposition 4 sheds light on the sufficient conditions for uniquely recovering (A*, B*), we now discuss
the existence of an appropriate dual matrix @) entailed by Proposition 4. From Proposition 1, we already
know that Condition 1 in Proposition 4 (2(A*)NT(B*) = {0}) is valid when u(A*)¢(B*) < 1. If we slightly
strengthen the condition as u(A*)E(B*) < %, there will be a dual matrix @ satisfying the requirements in
Condition 2 of Proposition 4 as well.

Theorem 5. Given C = A*+ B* with (A*)§(B*) < &, the unique minimizer (/L B) of (1) will be (A*, B*)
for the following range of ~y:

£(B*) 1 — 3u(A*)E(B*)
ve <1 — 4p(A*)E(B*)’ p(A*) > '

Specifically, v = % for any choice of p € [0,1] is always inside the above range and thus guarantees

exact recovery of (A*, B*).

The detailed proof of Theorem 5 can be found in Theorem 2 of [chandrasekaran2011rank]. The high-level
idea is that we consider candidates for the dual matrix @ in the direct sum Q(A*) & T'(B*) of the tangent
spaces. Since u(A*)E(B*) < ¢, Q(A*) NT(B*) = {0} by Proposition 1 and there exists a unique element
Qe Q(A*) ® T(B*) satistying PT(B*)(Q) = UVT and PQ(A*)(Q) = 7 - sign(A*). The proof proceeds by
showing that if u(A*)¢(B*) < g, then the projections of Q onto the orthogonal spaces Q(A*)¢ and T'(B*)+
are small, and Condition 2 of Proposition 4 is thus satisfied.

Other further reading for the course:

e Chandrasekaran, V., Recht, B., Parrilo, P. A., & Willsky, A. S. (2012). The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12, 805-849.
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