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Abstract

In this report, we utilize two different machine learning methods to classify the Higgs bosons
from background noisy particles given a Monte Carlo simulation dataset. The first predictor
is the k-Nearest Neighbors (kNN) approach, which classifies a particle based on the majority
vote of its k nearest neighbors. The second predictor is a powerful tree boosting method
called XGBoost. By building several regression trees in a scalable way, XGBoost makes its
final classification according to the additive scores of these trained regression trees.

1 Data Description and Preprocessing

High-energy particle collisions provide a modern avenue to the discoveries of exotic particles (Baldi et al.,
2014). By studying the states of matter and the physical laws behind these collisions, scientists can strengthen
or renew common understandings of those fundamental laws in Physics.

In this project, we build two classifiers on a subset of the original Higgs data with 100,000 instances and
predict whether a particle is indeed a Higgs boson based on 27 features. Specifically, for each i = 1, ..., n, the
first 21 attributes of a feature vector Xi ∈ R27 are kinematic properties measured by the particle detectors in
the accelerator. The rest 6 features in X1, ..., Xn are functions of the first 21 features derived by physicists to
help discriminate the Higgs bosons from background noisy particles. The responses Y1, ..., Yn are binary, in
which Yi = 1 signals the Higgs boson and Yi = 0 indicates the background noisy particle.

Imbalanced Data: Given the rarity of Higgs boson particles in each high-energy particle collision, we are
encountering a highly imbalanced classification problem. On our training set, only 1.004% of the instances
have their labels as 1. In other words, the ratio between negative and positive samples is around 98.602. In the
following sections, we will discuss how to tackle such an imbalanced training set and explain our classification
results by taking this factor into account.

Data Distribution: We further explore the data by visualizing the distribution of each feature in X =X
T
1
...
XT

n

 ∈ Rn×27 through the letter-value plot; see Figure 1. The features F1, ..., F27 in Figure 1 are the

columns of X . We apply the letter-value plot (Hofmann et al., 2017) instead of the well-known boxplot to
better capture the tail behavior of each feature distribution. Each indentation in a letter-value plot represents
the dk-th order statistics of the distribution for some k ∈ N defined recursively as follows:

d1 =

⌊
n+ 1

2

⌋
and dk =

⌊
1 + dk−1

2

⌋
for k ≥ 2.

As shown by Figure 1, most distributions of features are symmetric, except that F4, F22, ..., F27 have relatively
heavy right tails. The kernel density estimator (Chen, 2017) of each feature distribution is also visualized in
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Figure 1: Letter-value and density plots of the original feature distributions.
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Figure 2: Letter-value plots of the z-score, logarithmic, and min-max transformations of feature distribution.

Figure 1, where it is noticeable that several features have multimodal characteristics. We consider processing
the features using z-score, logarithmic, and min-max transformations:

Fj ←
Fj − µ̂j

σ̂j
, Fj ← sign(Fj) log (|Fj |+ 1) , and Fj ←

Fj −min{Fj}
max{Fj} −min{Fj}

,

where µ̂j is the empirical mean of feature Fj and σ̂j is the sample variance of feature Fj for j = 1, ..., 27.
The transformations are applied elementwise to each coordinate of F1, ..., F27, respectively; see Figure 2. The
patterns in feature distributions remain unchanged under the z-score transformation but become more widely
spread. The log-transformation makes the feature distributions into roughly the same scale so that the outliers
are closer to the main distributions. Finally, the min-max transformation pushes all the distributions to the
range [0, 1] and makes the distances between data points more comparable.
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In Section 2, we will apply the assigned kNN predictor to the original dataset as well as the z-score, logarithmic,
and min-max transformed datasets and investigate the performance differences.

2 Methodology

In this section, we describe the two predictors that are implemented to classify the Higgs boson particle.

2.1 k-Nearest Neighbors (kNN)

The kNN classifier makes its prediction by the majority vote of the k nearest neighbors of a query point
(Hastie et al., 2009). To measure the distances between data points, we apply the standard Euclidean metric

d(x, y) = ||x− y||2 =
√∑d

i=1(xi − yi)2 in Rd with d = 27. In particular, given that there are no concrete
reasons to reweigh some specific features or nearest data points, we retrieve the k nearest neighbors of a query
point by the Euclidean metric and placing equal weights on all these neighboring points.

2.2 XGBoost

XGBoost (Chen and Guestrin, 2016) is a powerful gradient tree boosting algorithm that is widely used in
classification tasks. It constructs an ensemble tree through K additive functions in order to make its prediction
as:

ŷi = φ(xi) =

K∑
j=1

fj(xi),

where each fj is a regression tree. To learn the set of functions in the final model, we minimize the following
objective function:

L(φ) =
n∑

i=1

`(ŷi, Yi) + γ

K∑
j=1

Tj ,

where ` is a differentiable convex loss function, γ ≥ 0 is the regularization parameter, and Tj is the number of
leaves in each tree. Given the binary response in our classification problem, we use the log loss function:

`(Yi, ŷi) = −Yi log ŷi − (1− Yi) log (1− ŷi) .
The actual training of XGBoost leverages a second-order approximation of the objective function and a greedy
algorithm that starts from a single leaf and iteratively adds branches to the tree so as to learn the tree structure.
To prevent overfitting, we also consider column (feature) subsampling in the training process of XGBoost
models.

Due to the time constraint, it is impossible to tune every parameter of XGBoost models to the optimal.
Therefore, we control the complexity of our XGBoost model by tuning the number of estimators K, the
maximum depth of a tree M , the regularization parameter γ, and the feature subsampling ratio ζ. In general,
the larger the number of estimators K is, the more complex the model would be. It will have a higher chance
to be overfitting. In addition, increasing the maximum depth of a tree M also leads to a more complicated
model. Hence, we may need a larger value of the regularization parameter γ to constrain the model complexity
or subsample the columns/features when learning the tree splits. The column subsampling also helps speed up
the (parallel) computations of XGBoost models (Chen and Guestrin, 2016).

3 Training Details and Results

In this section, we delineate the details of our training processes of kNN and XGBoost predictors. The main
scheme is to leverage the (5-fold) cross-validation to select the best collection of parameters for the predictor.
As discussed in Section 7.12 in Hastie et al. (2009), the cross-validation error can approximate the expected
error well, so it sheds light on the predictability of our fine-tuned predictor.

Evaluation Metric: Given that the responses are highly imbalanced and it is of great significance to capture
every possible Higgs boson, we utilize an asymmetric classification loss to measure the performances of our
predictor F̂ : R27 → {0, 1} as:

E(F̂ (xi), Yi) = 1{F̂ (xi)6=Yi,Yi=0} + 100 · 1{F̂ (xi)6=Yi,Yi=1}. (1)

That is, we penalize 100 times more on a predictor F̂ if F̂ misclassifies a true Higgs boson.
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(b) Zoom into k = 1.

Figure 3: The average total loss of kNN predictors under different choices of k and 5-fold cross-validations.

3.1 Training kNN

We randomly split our training set with 100,000 into 5 subsets with equal size, alternatively train our kNN
predictor on four subsets, and measure the performances of the trained kNN predictor on the withheld subset
using the asymmetric loss (1). The average total loss over all the testing data under the 5-fold cross-validation
is recorded. Furthermore, to reduce the randomness of 5-fold cross-validations, we repeat the random splitting
several times (due to time constraint, we only repeat 3 times) and the subsequent training and validation
procedures. Figure 3a displays the 5-fold cross-validation results for kNN predictors under different choices
of the parameter k, where the error bars indicate the standard errors of total losses in the repeated sampling.
Notice that the total loss of the kNN predictor attains its minimum when k = 1. After zooming into the results
when k = 1 in Figure 3b, we further note that the kNN predictor with k = 1 on the original data has the best
performance (up to a certain randomness level). Therefore, we prepare the final kNN predictor by setting
k = 1 and training it on the entire training set without using any data transformations. The total number of
predicted Higgs Boson for this 1NN predictor is 99.

We evaluate the performance of this final kNN predictor through its predicted false positive rate (FPR) and
false negative rate (FNR) defined as:

FPR =
FP

FP + TN
and FNR =

FN

FN + TP
, (2)

where FP stands for the number of false positive samples, TN is the number of true negative samples, FN
represents the number of false negative samples, and TP is the number of true positive samples. Again, we
leverage the 5-fold cross-validation to compute these quantities and average them on these 5-fold outputs. It
leads to 0.5182% for the estimated false positive rate and 45.00% for the estimated false negative rate.

3.2 Training XGBoost

Similar to the parameter tuning process of kNN predictors, we apply the 5-fold cross-validation in order to
search for the best combination of four hyperparameters:

• the number of estimators K with its candidate range as {100, 200, 300};
• the maximum depth of a tree M with its candidate range as {4, 6, 8, 10};
• the regularization parameter γ with its candidate range as {0, 0.2, 0.4};
• the feature subsampling ratio ζ with its candidate range as {0.6, 0.8, 1}.

In total, there are 108 possible combinations of these four hyperparameters. During the hyperparameter
tuning process, we also explore the case when K = 400, 500 because the resulting XGBoost models under
these choices of parameters overfit the data. The implementation of XGBoost in Python also provides a
hyperparameter for balancing the positive and negative classes. We set it 98, which is the ratio between
negative and positive samples. By specifying this hyperparameter, it scales the gradient for the positive class

4



(100, 4) (100, 6) (100, 8) (100, 10) (200, 4) (200, 6) (200, 8) (200, 10) (300, 4) (300, 6) (300, 8) (300, 10)
(Number of estimators, Maximum tree depth)

0

2000

4000

6000

8000

10000

To
ta

l l
os

s

0.0
0.2
0.4

Figure 4: The average total loss of XGBoost predictors under different combinations of the hyperparameters
and 5-fold cross-validations.

and helps the model achieve better performance when making predictions on the positive class1. (Rigorously
speaking, as we use (1) as the evaluation metric, we should have set this hyperparameter to be 100. We use
the default as the ratio between negative and positive samples in that the value 98 is close to 100 and the
performances of resulting XGBoost models are similar.)

Among the 108 possible combinations of the above four hyperparameters, the parameter set (K = 100,M =
4, γ = 0.4, ζ = 0.8) attains the minimal average total loss under 5-fold cross-validations; see Figure 4. In
Figure 4, the error bar in each bar plot is the standard error among different choices of the feature subsampling
ratio ζ, so the one with the smallest lower error bound will indicate the optimal value. We estimate the
predicted false positive rate of the final XGBoost model under the optimal choices of hyperparameters as
6.08% and predicted false negative rate as 34.701% through a 5-fold cross-validation.

4 Conclusion

In this report, we explore the performances of two different predictors on the Higgs boson data. Different from
the original paper (Baldi et al., 2014), which utilizes a 5-layer neural network model and trains it on a roughly
balanced data sample, our task is more challenging due to the imbalanced labeling issues and time constraints.
It is worth mentioning that the 1NN classifier works well on this imbalanced labeling data under a rigorous
5-fold cross validation procedure. Finally, by searching over numerous combinations of the hyperparameters,
the powerful XBGoost model can further reduce the predicted false negative rate by more than 22% when
compared with the optimal 1NN predictor, though it comes with a sacrifice in wrongly predicting many Higgs
boson.
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