
Hidden Markov Model (Final Report of STAT 534)

Yikun Zhang
Department of Statistics,

University of Washington, Seattle
Seattle, WA 98195
yikun@uw.edu

Abstract

In this report, we are supposed to furnish some detailed information about how
to train an Hidden Markov Model (HMM) by the Baum-Welch method. A 5-fold
Cross-validation (CV) is applied to choose an appropriate number of states. In
addition, we implement the Viterbi algorithm to calculate the most likely sequence
of states for all the data. Finally, we will predict the next output and the next state
given any observed sequence.

1 Introduction and Background

The hidden Markov model (HMM) is a direct extension of the (first-order) Markov chain with a
doubly embedded stochastic process. The underlying Markov chain model (with state spaces) is
not observable while each observation is a probabilistic function of the corresponding state.[4] The
applications of HMM spread in various fields, from weather prediction[3] to speech recognition[4].

1.1 Terminologies and Notations

By definition, HMM embraces a discrete time Markov chain with a discrete state space as the hidden
state model. In this project, the observed variables are discrete/categorical, so the resulting model
is called the multinomial hidden Markov model. Now we introduce some notations for this HMM,
which follow from Rabiner [4]. Suppose that the HMM has N distinct hidden states denoted by
S1, ..., SN and M distinct observation symbols per state denoted by v1, ..., vM .

• The state at time t: qt ∈ {S1, ..., SN}
• The output at time t: Ot ∈ {v1, ..., vM}
• The transition probability matrix: A = [aij]

N
i,j=1, where

aij = P [qt+1 = Sj |qt = Si] ≥ 0, 1 ≤ i, j ≤ N,
N∑
j=1

aij = 1

• The emission probability matrix: B = [bi(k)]
N
i=1

M
k=1, where

bi(k) = P [Ot = vk|qt = Si], 1 ≤ j ≤ N, 1 ≤ k ≤M

• The initial state distribution π = [πi]
M
i=1, where πi = P [q1 = Si], 1 ≤ i ≤ N

Since a multinomial HMM can be completely determined by three probability measures A,B, and π,
for convenience, we use the compact notation λ = (A,B, π).

1.2 The Four Basic Problems for HMMs

There are four problems that we need to solve for the HMM model in order to make it useful in
real-world applications.1

Problem 1 Given the observation sequence O = O1O2 · · ·OT and a model λ = (A,B, π), how
do we efficiently compute P (O|λ), the probability of the observation sequence given the
model? The Forward and Backward algorithms are developed to tackle this problem. We
define the forward probability and backward probability as

αt(i) = P [O1:t, qt = Si|λ], βt(i) = P (O(t+1):T |qt = Si, λ). (1)

Forward Algorithm:
1. Let α1(i) = πibi(O1) for 1 ≤ i ≤ N ;
2. For t = 1, ..., T − 1, compute

αt+1(i) =

N∑
j=1

αt(j)aijbj(Ot+1)

Backward Algorithm:
1. Let βT (i) = 1 for 1 ≤ i ≤ N ;
2. For t = T − 1, T − 2, ..., 1, compute

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j)

Then the likelihood P (O|λ) =
N∑
i=1

αT (i) =
N∑
j=1

πjbj(O1)β1(j).

Problem 2 Given the observation sequence O = O1O2 · · ·OT and a model λ = (A,B, π), how do
we reconstruct the most likely state sequence Q = q1q2 · · · qT ? Considering the possibility
of state transitions with zero probability, we seek to find the single best state sequence to max-
imize P (Q|O, λ) which is equivalent to maximizing P (Q,O|λ). The Viterbi Algorithm
is a well-known method to tackle this optimization problem.

Problem 3 How do we adjust the model parameters λ = (A,B, π) to maximize P (O|λ)? With the
presence of hidden variables, the direct approach to the Maximum Likelihood Estimator is
intractable and an EM algorithm for HMM is proposed (Baum-Welch Algorithm).

Problem 4 Given the observation sequence O = O1O2 · · ·OT and a model λ = (A,B, π), how do
we predict the next output and the next hidden state of HMM? In order to predict the most
possible outcome at time point T +1 or more generally, at time point T +h, for h = 1, 2, ...,
we resort to the maximum likelihood method. Note that

P (OT+h|O1:T) =

N∑
i=1

N∑
j=1

P (OT+h, qT+h = Si, qT = Sj |O1:T)

=

N∑
i=1

N∑
j=1

P (OT+h, qT+h = Si|qT = Sj) · P (qT = Sj |O1:T)

=

N∑
i=1

N∑
j=1

P (OT+h|qT+h = Si) · P (qT+h = Si|qT = Sj) · P (qT = Sj |O1:T)

=

∑N
i=1

∑N
j=1 bi(OT+h)a

(h)
ji αT (j)∑N

k=1 aT (k)
,

(2)

where a(h)ji is the (j, i) entry of the h-step transition probability matrix, i.e., Ah. In this
project, we only consider the case when h = 1. The predicted probabilities for the next
output are P (OT+1 = vk|O1:T), 1 ≤ k ≤M and we predict the next output of O1:T by

ÔT+1 = argmax
vk

P (OT+1 = vk|O1:T), 1 ≤ k ≤M.

As for the prediction of the next hidden state qT+1, there are several plausible approaches.

1We briefly summarize the problem statements in Rabiner [4] and add one more problem based on our project
requirement.

2

For instance, we can apply the Viterbi algorithm to O1:(T+1) to reconstruct the most likely
hidden state sequence q1:(T+1) and obtain the next state by examining the last element of
this state sequence. Or, based on the last hidden state qT inferred by the Viterbi algorithm,
we can choose the next hidden state by argmaxSk

P (qT+1 = Sk|qT). If we assume that
emission probabilities are nonzero, the maximum likelihood method can also be applied to
predict the hidden state at time T + h:

P (qT+h = Sk|O1:T) =

N∑
i=1

P (qT+h = Sk, qT = Si|O1:T)

=

N∑
i=1

P (qT+h = Sk|qT = Si) · P (qT = Si|O1:T)

=

∑N
i=1 a

(h)
ik αT (k)∑N

j=1 αT (j)
,

(3)

where a(h)ik is the (i, k) entry of the h-step transition probability matrix. When h = 1,

q̂T+1 = argmax
Sk

P (qT+1 = Sk|O1:T).

1.3 Cross-Validation and Model Selection

Cross-validation (CV) is the most widely used method for estimating prediction error and hyperpa-
rameter tuning.[2] For hyperparameter tuning in HMM, an intuitive approach is to consider different
values for the number of states and pick the one with the highest likelihood value. However, this idea
tends to favor complex models and suffer the problem of overfitting, i.e., the more hidden states we
fit to the data, the higher likelihood value we will obtain. (As shown in Section 2.2.) To tackle this
issue, we use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) that
penalize complex models:[1]

AIC = −2 logL(λ|O) + 2p, BIC = −2 logL(λ|O) + p log(T),

where T indicates the length of the observed sequence and p = p(λ) denotes the number of
independent parameters of the model. In an HMM, p(λ) = N2 − 1 +N(M − 1).

2 Implementation Details and Results

The training data contains n0 = 1000 sequences of T = 40 integers from 0, 1, 2, 3. All these
sequences are independent, yielding that the log-likelihood of the whole training data is equal to
the sum of log-likelihoods of individual sequences. We use all the sequences and the Baum-Welch
algorithm to fit the MLE λ̂ = (π̂, Â, B̂) for the HMM. A Python function called Data_preprocess
is coded to read the train534.dat into a numpy array. All the implementations for HMM are
coded in Python by myself. Only the Python packages numpy, time, matplotlib.pyplot, and
the KFold function in sklearn.model_selection are imported. In my codes, M stands for the
number of states and all other variable namings follow Chen [1]. See my Python code for details.

2.1 Implementation Details

The Forward function:

• Input: Initial distribution v ([N,] numpy array); Transition probability P ([N,N] numpy
array); Emission probability E ([N,M] numpy array); Observations from HMM: Obers
(an integer list or a [T,] numpy array).
• Output: A tuple: (A numpy array for forward probabilities in all the time steps, a float point

number for the likelihood value based on Obsers)
• Implementation Details: For the base case of iterations, I used numpy.multiply to

compute the element-wise product of v and E. To compute the product αt(j)aijbj(Ot+1), I
applied numpy.multiply and numpy.dot to accelerate the multiplication.

3

The Backward function:

• Input: Same as the Forward function
• Output: A tuple: (A numpy array for backward probabilities in all the time steps, a float

point number for the likelihood value based on Obsers)
• Implementation Details: To compute the product aijbj(Ot+1)βt+1(j), I also applied
numpy.multiply and numpy.dot to accelerate the multiplication.

The Baum-Welch function:

• Input: Trainging set: training; The number of states: M; Initial distribution v_0; Tran-
sition probability P_0; Emission probability E_0 (Initial values for EM); An indicator
of whether the initial values for EM is provided: init=True; Threshold for the relative
difference of log-likelihood between two iterations: accuracy=1e-5; The maximum num-
ber of iteration: num_iter=10**5; Binary variable for controlling the stopping criterion:
norm=True (True: Use L2 norm for all parameters)

• Output: A tuple: (v, P, E) stands for (π,A,B)
• Implementation Details: We use the numpy.random.rand function to randomly initialize
(v,P,E) and normalize them across rows. We apply Forward and Backward functions to
obtain the forward and backward probabilities. Then γt(i) = P (qt = i|O1:T) is calculated
via numpy.multiply. Based on this quantity, a single and double for loops are applied to
update E and P. Finally, the (v, P, E) is normalized through rows before returning. In
addition, the rows of the emission probability matrix are reordered, where the row with the
largest variance (computed by numpy.var) is label N − 1, etc. The rows and columns of
the transition probability matrix are also reordered accordingly.

• Remark. By the independence assumption, the log-likelihood of the whole training set is
equal to the summation of the log-likelihoods in each sequence, which can be computed
from Forward or Backward functions. The stopping criterion here for the Baum-Welch
algorithm is relative difference of log-likelihoods between two consecutive iterations, i.e.,
|L(k+1)(λ|O)−L(k)(λ|O)|

|L(k)(λ|O)| ≤ ε. In the whole project, we choose ε = 10−5.

The Viterbi function:

• Input: Same as the Forward function
• Output: A tuple: (A list storing the most likely sequence of states, a float point number for

the maximum joint probability)
• Implementation Details: I initialize a [M,T − 1] numpy array f to store the optimal

backtracking state for each hidden state at each time step. A double for-loop is applied to
compute δt(i) = max

j=1,...,N
[δt−1(j)aji]bi(Ot) and ψt(i) = argmax

j=1,...,N
[δt−1(j)aji].

• Remark. Note that when T is large, the rounding error of computing the probability can be
problematic.[1] Thus, I move all the calculations to log-scale and use the recursive relation:

δ̃t(i) = log bi(Ot) + max
j=1,...,N

[δ̃t−1(j) + log aji].

The Predict function:

• Input: Initial distribution v ([N,] numpy array); Transition probability P ([N,N] numpy
array); Emission probability E ([N,M] numpy array); Observations from HMM: Obers
(an integer list or a [T,] numpy array); Time step: h=1; An indicator of whether the Viterbi
is used to predict the next hidden state: viterbi=False.

• Output: A tuple: (The next output of HMM, The next state, Output probabilities)
• Implementation Details: Following from Equation 2, we apply the Forward func-

tion to compute forward probabilities and then use numpy.dot twice to compute
N∑
i=1

N∑
j=1

bi(OT+h)a
(h)
ji αT (j). The binary variable viterbi controls whether the Viterbi

algorithm is used to construct the next hidden state. In the following prediction, we assume
all the emission probabilities are nonzero and implement Equation 3 to predict the next
hidden state.

4

As for the choice of the number of states, we implement 5-fold cross-validation, where the training
data is randomly split into 5 parts and each part has 200 sequences. For a whole 5-fold CV, one part
of the training data is held out and we apply the Baum-Welch algorithm on the rest 800 sequences to
fit the parameter λ = (π,A,B). Then the Backward, BIC, and AIC functions are applied to compute
the log-likelihood, BIC, and AIC on the hold-out 200 sequences. The candidate choices of the number
of states range from 3 to 10.

2.2 Results

The plots of average log-likelihoods (the log-likelihood on the hold-out set divided by the number of
sequences, i.e., 200), BICs, and AICs versus the number of states are shown in Figure 1.

3 4 5 6 7 8 9 10
The number of states

50

0

50

100

150

Log-likelihood
AIC
BIC

(a) 5-Fold CV Results

3 4 5 6 7 8 9 10
The number of states

53.8

53.6

53.4

53.2

53.0

52.8 Log-likelihood

(b) Zoomed-in Log-likelihoods

Figure 1: Plots of Average Log-likelihoods, BICs, and AICs v.s. the Number of States

Figure 1 (b) verifies the claim that the log-likelihood will accrue as the number of parameters in
HMM increases. Hence choosing the number of states in HMM based on the maximum value of
log-likelihoods is not convincing. Figure 1 (a) indicates that the AIC and BIC reaches their minima
when the number of states is 4. Since the BIC and AIC will gradually become larger as the number of
states in HMM increases, we choose the number of hidden states to be 4. In addition, we try different
values of random seeds and similar curves will be produced. The 5-fold cross-validation, where the
number of states ranges from 3 to 10, took 11h 23m 5s to run.

The initialization for the Baum-Welch algorithm is critical to its convergence towards the global
maximum and the prediction accuracy of HMM. Thus, we apply the same 5-fold CV procedure again
and use the first 39 observations in each sequence as inputs to predict the 40th observation. It leads
to the accuracy curve in Figure 2. The accuracy of HMM predictions attains the maximal when the
random seed for the initialization is 301. We use this seed in subsequent training processes.

0 50 100 150 200 250 300 350 400
The values of random seed

0.325

0.330

0.335

0.340

0.345

0.350

0.355

Ac
cu

ra
cy

Figure 2: The Accuracy Curve for Different Random Seeds

Then we apply the Baum-Welch function on the whole training set (1000 sequences) to fit the
parameter λ̂ = (π̂, Â, B̂) as follows (rounding to two decimals). The Baum-Welch algorithm on

5

the training set of 1000 sequences converged in 207 iterations and took 270.83 seconds to run. The
learning curve of the Baum-Welch algorithm is shown in Figure 3.

π̂ = [0.49, 0.17, 0.20, 0.13] ,

Â =

States 0 1 2 3 0 0.79 0.03 0.18 0.00
1 0.12 0.05 0.19 0.64
2 0.05 0.58 0.36 0.01
3 0.00 0.32 0.35 0.33

, B̂ =

States/Observations “0” “1” “2” “3” 0 0.50 0.04 0.36 0.10
1 0.41 0.47 0.08 0.04
2 0.07 0.27 0.66 0.00
3 0.06 0.08 0.03 0.83

.

0 50 100 150 200
Iteration Step

54750

54500

54250

54000

53750

53500

53250

Lo
g-

lik
el

ih
oo

d

(a) ε = 10−5

0 200 400 600 800 1000
Iteration Step

54750

54500

54250

54000

53750

53500

53250

Lo
g-

lik
el

ih
oo

d

(b) ε = 10−8

Figure 3: The Learning Curves of the Baum-Welch Algorithm

Figure 3 shows that the observed log-likelihoods soars up in the first 10 iterations and then slow
downs. Nevertheless, the increasing rate of log-likelihoods is accelerating from 120 to 160 iterations.
Then the changes of log-likelihoods become negligible after 200 iterations. This result accidentally
justifies the correctness of the choice of stopping criterion (ε = 10−5).

Then we use the Viterbi function to calculate the most likely sequence of states for all the data
and store the results in a n0 × T numpy array. The running time for the Viterbi algorithm on all the
training data is 1.94 seconds, and 0.096 seconds on the test data.

As we did in selecting the random seed, we use the first 39 observations in each sequence of the
training set as inputs to predict the 40th observation. The accuracy on the training set is 0.355. The
formulas for predicting the next output and state are given in Section 1.2.

In order to calculate the log-likelihood of the test set, we apply the Forward or Backward function
50 times and sum up all the log-likelihoods of the sequences in the test set. It turns out that the
log-likelihood of the test set is -2708.648.

3 Conclusion

In this project we implement some standard ingredients of the hidden Markov model in Python
and conduct 5-fold cross-validations for model selection. The most time-consuming part of HMM
is the Baum-Welch algorithm. Hence in the future, we are supposed to leverage some gradient
descent methods to accelerate the convergence of this EM algorithm. In addition, some preliminary
explorations on the data like clustering will also enable us to figure out a more appropriate initialization
for the Baum-Welch algorithm and facilitate its convergence.

References
[1] Y.-C. Chen. Lecture 9: Hidden markov model, 2018. URL http://faculty.washington.

edu/yenchic/18A_stat516/Lec9_HMM.pdf.

6

http://faculty.washington.edu/yenchic/18A_stat516/Lec9_HMM.pdf
http://faculty.washington.edu/yenchic/18A_stat516/Lec9_HMM.pdf

[2] T. Hastie, R. Tibshirani, and J. Friedman. The Element of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics. Springer-Verlag New York, second
edition edition, 2009.

[3] D. Khiatani and U. Ghose. Weather forecasting using hidden markov model. In 2017 International
Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), pages
220–225, Oct 2017. doi: 10.1109/IC3TSN.2017.8284480.

[4] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, Feb 1989. ISSN 0018-9219.

7

	Introduction and Background
	Terminologies and Notations
	The Four Basic Problems for HMMs
	Cross-Validation and Model Selection

	Implementation Details and Results
	Implementation Details
	Results

	Conclusion

