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Introduction

Objective of the Hotel Ranking Task

Return a list of hotels with user-preferred ones placed on the top.
= Optimizing the conversion rate (on hotels with high commissions).
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Introduction

Objective of the Hotel Ranking Task

Return a list of hotels with user-preferred ones placed on the top.
= Optimizing the conversion rate (on hotels with high commissions).

S

Features/Predictors: X, = |V, ...V, U . U@ | fori=1,..,n.

Hotel Features ~ User Features

Responses: Y; € {0 : Not Booked, 1 : Booked} fori =1, ...,n.
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Introduction

How to Identify User-Preferred Hotels?

* The prices of hotels clicked/booked by a user quantify
his/her affordability.

* The price preferences of users on our platform are diverse.
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Introduction

Variety of User Price Preferences
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Introduction

Multimodal Nature of User Price Preferences

The price preferences varies between different groups of users
on our platform.

W High-starred Users
I New Users

0 1000 2000 3000 4000 } 0 1000 2000 3000 4000
Actual Booking Prices Actual Booking Prices

Figure 2: Overall and group-specific distributions of actual booking
prices on December 6, 2021.
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Main Objective: User-Preferred Hotel Price Prediction

Correctly predicting the preferred hotel prices or price intervals
is of great significance to our hotel ranking task!
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Main Objective: User-Preferred Hotel Price Prediction

Correctly predicting the preferred hotel prices or price intervals
is of great significance to our hotel ranking task!
e Our current re-ranking mechanism relies on the predicted
user-preferred prices.

Mathematically, given a user X; = x; = [uﬁi), o u,(f)}, we intend
to predict his/her preferred price interval

[@l(mi), @u(ﬂ?i)} :
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Main Objective: User-Preferred Hotel Price Prediction

Correctly predicting the preferred hotel prices or price intervals
is of great significance to our hotel ranking task!
e Our current re-ranking mechanism relies on the predicted
user-preferred prices.
Mathematically, given a user X; = x; = [uﬁi), o u,(f)}, we intend
to predict his/her preferred price interval

[@l(l‘i)a @u(ﬂ?i)} :

Here, the features ugz),j =1,...,prange from
» user behaviors (such as historical clicked/booked hotels,
user IDs, etc.)
e |ocation information (such as city IDs, average GMV in that
city, etc.)
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Methodology: Quantile Regression

Drawback of the Current Online Model (Baseline)

Current online model: It is a weighted sum of historical booked
prices, real-time clicked prices, and the specific quantile price in the
searched city.

Zi Wtime * Wiype * Wabnormal * Weity * Price;

Predicted Price =
Zi Wtime * Wtype * Wabnormal * Weity
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Drawback of the Current Online Model (Baseline)

Current online model: It is a weighted sum of historical booked
prices, real-time clicked prices, and the specific quantile price in the
searched city.

Zi Wtime * Wiype * Wabnormal * Weity * Price;

Predicted Price =
Zi Wtime * Wtype * Wabnormal * Weity

® The choices weights wiime, Wiype, Wabnormal> Weity are heuristic and
outdated.

* The preferred price interval is symmetrically extended from the
above point estimate.

e The accuracy of the current predicted prices (or price intervals)
is also limited.
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Methodology: Quantile Regression

Our Proposed Method: Conditional Quantile Regression
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Figure 3: (Smoothed) conditional distribution of historical booked/preferred
prices for a user with feature X; = x;. The synthetic density function (blue
curve) is given by f(ulx;) = -utexp (
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Methodology: Quantile Regression

Our Proposed Method: Conditional Quantile Regression

Given the conditional cumulative distribution function
F(y|X = ) of booked prices, we pursue an interval

Q- (@), Q1+ (@)],
where Q. (x) = inf {y: F(y|X =) > r}and 7 € (0,1/2].7

0.20

015
10%y/quantile 90% quantile

0.10

0.05
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0 200 400 600 800 1000
Booked/Preferred Prices

Figure 4: r and (1 — 7) quantile of F(y| X = x) with 7 = 0.1.

TKoenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica:

Journal of the Econometric Societi, 33-50.



Methodology: Quantile Regression

How to Fit the Conditional Quantile?
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Methodology: Quantile Regression

How to Fit the Conditional Quantile?

The conditional quantile Q- (x) is the solution to the following
optimization problem:

Q-(z) = arg;ninlE [pr(Y — q)| X =a], Q)

where

7€, £20,

—(1-7), ¢£<0 @

pr(&) = &[T — Ligcry] = {

is the so-called “pinball” loss (Koenker and Bassett, 1978; Firpo
et al., 2009; Steinwart and Christmann, 2011).
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Methodology: Quantile Regression

“Pinball Loss”

Tr@

v

Remark:

e When 7 = 0.5, the aforementioned optimization problem
(1) recovers the absolute deviation problem.

® The loss is robust to outliers (Hampel, 1971; John, 2015).
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Correctness of the (Conditional) Quantile Regression

Given the conditional distribution function F(y| X = x),

Qr(x) =inf{y: F(y|X =x) > 7}

is the solution to (1).
More generally, given any cadlag function F(y),

qr = inf{y: F(y) > 7}

is the solution to the unconditional quantile regression prob-
lem arg min, E [p, (Y — q)].

Yikun Zhang 14/ 35
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Quantile Regression in Practice

Theoretically, @ (z) = arg min, E [p, (Y — ¢)|X = .
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Methodology: Quantile Regression

Quantile Regression in Practice

Theoretically, @ (z) = arg min, E [p, (Y — ¢)|X = .

Practically, given the training set with clicked/booked hotel

entries '
(o) = {(|oi", . vP] i) }.

we solve the following empirical risk minimization (ERM)
problem:

Q, = argmin — > o (Yi— QX))

n
QEF =1

where F is the function class spanned by our (neural network)
models.
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Methodology: Quantile Regression

Fitting the Empirical Quantiles Q. and Q1_,

Input: {(X,,Y;)} = { ([Ul(“, . U;Si)] , Yi) } where the continuous features
are standardized and discrete ones are converted to embedding vectors.
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Methodology: Quantile Regression

Fitting the Empirical Quantiles Q, and Q+_,

Input: {(X,,Y;)} = { ([Ul(”, . Uéi)] , Yi) } where the continuous features
are standardized and discrete ones are converted to embedding vectors.
Architecture: One shared hidden layer 512 x 200 with additional separate
200 x 100 x 1 full-connected Relu layers.

| pinball loss ! 1 pinball loss !

I I

I PRICE UP MLP. I [ PRICE DOWN MLP. ]

MLP

[ continue feature. ] [a'ngh amnmmm] [ muli discrete feature ]

Figure 5: Double-tower architecture (image credit: Xianzhang Xiang)
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Fitting the Empirical Quantiles Q, and Q+_,

Input: {(X,,Y;)} = { ([Ul(”, . Uéi)] , Yi) } where the continuous features
are standardized and discrete ones are converted to embedding vectors.
Architecture: One shared hidden layer 512 x 200 with additional separate
200 x 100 x 1 full-connected Relu layers.

| pinball loss ! 1 pinball loss !

I I

I PRICE UP MLP. I [ PRICE DOWN MLP. ]

MLP

[ continue feature. ] [a'ngh amnmmm] [ muli discrete feature ]

Figure 5: Double-tower architecture (image credit: Xianzhang Xiang)
Objective: {Qr, Q1 } = argmin 1 3 [pr (Vi = £(X0)) + pror (Vi — 9(X0)) |
{fig}cF i

n
=1
with 7 = 0.1.
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Methodology: Quantile Regression

Why do we use Relu Neural Network? (Minimax Theory)

Assume that

¢ the true quantile function @, belongs to the Holder class H or Besov
space B.

e the number of layers L satisfies log,(n) < L < n¥re.

P
< nz+r logn.

~

® the maximum norm of network coefficients || 3| max
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Why do we use Relu Neural Network? (Minimax Theory)

Assume that
¢ the true quantile function @, belongs to the Holder class H or Besov
space B.
e the number of layers L satisfies log,(n) < L < n¥re.

P
< nz+r logn.

~

® the maximum norm of network coefficients || 3| max
Then,
10+ — Q-3 < C - (logn)*n” %47,
where s is the smoothness parameter, p is the dimension of the feature
space, and n is the sample size (Schmidt-Hieber, 2020; Padilla et al., 2020).
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Why do we use Relu Neural Network? (Minimax Theory)

Assume that
¢ the true quantile function @, belongs to the Holder class H or Besov
space B.
® the number of layers L satisfies log,(n) < L < n¥e,

P
< nz+r logn.

~

® the maximum norm of network coefficients || 3| max
Then,
10+ — Q-3 < C - (logn)*n” %47,
where s is the smoothness parameter, p is the dimension of the feature
space, and n is the sample size (Schmidt-Hieber, 2020; Padilla et al., 2020).

Based on the nonparametric theory (Wasserman, 2006; Tsybakov, 2008), this
rate of convergence is indeed minimax up to a log factor!

" is minimax

= s B [(F(e0) - flaw)’| = inf sup | (Fuleo) ~ flan)]

fen fn fEH

where the infimum is taken among all the estimators.
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Summary of Our Proposed Model

* Goal: Preferred Price Interval [QT(:c), Ql_T(a:)] with
Q-(x)=inf{y: F(y|X =x) >7}and 7 € (0,1/2].

¢ Theoretical Solution: Conditional Quantile Regression,
Q- (x) = argminE [p. (Y — ¢)| X = x].
q

¢ Practical Model: Empirical Risk Minimization with Relu
Networks,

0, —argmin = > p, (¥ - Q(X3).

n
QeF =1

 Minimax Guarantee: ||Q, — Q-l7, = 0asn — oo.

Yikun Zhang 18 /35



Methodology: Quantile Regression

Other Potential Choices of Quantile Regression Models

* Quantile Regression Forests (Meinshausen, 2006): The
random forests method has the uniform consistency in
estimating the cumulative distribution function (CDF) of
VX ==

Yikun Zhang 19/35



Introduction  Methodology: Quantile Regression Offline Evaluations Discussion and Future Works ~ References

Other Potential Choices of Quantile Regression Models

* Quantile Regression Forests (Meinshausen, 2006): The
random forests method has the uniform consistency in
estimating the cumulative distribution function (CDF) of
VX ==

* k-Nearest-Neighbors (kNN) Fused Lasso (Madrid Padilla
et al., 2020; Ye and Padilla, 2021): similar to our ERM
problem but with a fused lasso penalty term based on
KNNs.
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Other Potential Choices of Quantile Regression Models

* Quantile Regression Forests (Meinshausen, 2006): The
random forests method has the uniform consistency in
estimating the cumulative distribution function (CDF) of
VX ==

* k-Nearest-Neighbors (kNN) Fused Lasso (Madrid Padilla
et al., 2020; Ye and Padilla, 2021): similar to our ERM
problem but with a fused lasso penalty term based on
KNNs.

® Quadratic Programming and Reproducing Kernel Hilbert Space
(RKHS) Methods (Takeuchi et al., 2006), Nadaraya-Watson
Nonparametric Regression Estimator (Huang and Nguyen,
2018), etc.
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Offline Evaluations

Evaluation Metrics

e Coverage Accuracy:
ACC(V,I) = Ly
y ﬁ 2_: wz)]}a
where Y = {Y;}" , is a collection of booked hotel prices

and I(x;) = [@T(a:i), @1_T(mi)] is the predicted preferred
price interval for the user with feature x;.
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Offline Evaluations

Evaluation Metrics

e Coverage Accuracy:

1 n
ACC(V,T) = - z:: [F]}

where Y = {Y;}" , is a collection of booked hotel prices
and I(x;) = [@T(a:i), @1_T(mi)] is the predicted preferred
price interval for the user with feature x;.

¢ Average Interval Length:

Average Length

:Ir—‘

\@ ) — Q1+ ()|

Yikun Zhang 20/35




Offline Evaluations

Neural Network Quantile Regression on the “My Location” Scenario

Cov. Acc. | Cov. Acc. (or- | Average Inter-
(fh_prices) der prices) val Length
Baseline Model || 0.7521 0.8019 283.8624
Our NN QR 0.8718 0.8593 233.5811

Table 1: Comparison between our neural network quantile regression

model and the current online model (baseline) on the “My Location”
scenario.

Yikun Zhang 21/35
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Neural Network Quantile Regression on the “Main Ranking” Scenario

Cov. Acc. | Cov. Acc. | Average
(fh_prices) | (order Interval
prices) Length
Baseline Interval | 0.5590 0.5804 213.1197
Baseline Interval Il 0.8593 0.8534 597.1224
Our NN QR (Before calibration) || 0.7883 0.7351 317.5999
Our NN QR (After calibration) || 0.9268 0.8954 482.3805

Table 2: Comparison between our neural network quantile regression
model and the current online model (baseline) on the “Main Ranking”

scenario.
where oo = 0.3 ~ 0.5.

Yikun Zhang 22/35

o Notes: The calibration means that we extend our predicted interval as:

|:Q7— a:z ’Qq— $1 Ql ‘r(mz) Ql T wz +a- ‘QT ml Q T(wl)




DINISSIEN N TTERTS

Discussion: Non-Crossing Property of Quantile Regression

Recall that our current optimization framework is

n

(GG} = agmin 237 [0, (- Qo (X)) +or - (%~ Qo (X)) .

Q@1 }ycF N i
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DINISSIEN N TTERTS

Discussion: Non-Crossing Property of Quantile Regression

Recall that our current optimization framework is
~ o~ . 1
{0,012} = argmin 3" [pr (Vi = QX)) +p1-r (Vi = Qur (X)) |-
{@r.Qi_r}cF i

However, a constraint is required for the monotonicity of quantiles, i.e., for
any 7 € (0,1/2], we should solve the constrained optimization problem:

(0.Gi b = argmin 137 [p (- Q(X0) 4 pis (V- Qi (X))

{Q+.Q1_7}cF N i
subjectto Q- (X;) < Q1—-(X;) foralli =1,....n.
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Discussion: Non-Crossing Property of Quantile Regression

Recall that our current optimization framework is
~ o~ . 1
{0,012} = argmin 3" [pr (Vi = QX)) +p1-r (Vi = Qur (X)) |-
{@r.Qi_r}cF i

However, a constraint is required for the monotonicity of quantiles, i.e., for
any 7 € (0,1/2], we should solve the constrained optimization problem:

(0.Gi b = argmin 137 [p (- Q(X0) 4 pis (V- Qi (X))

{Q+.Q1_7}cF N i
subjectto Q- (X;) < Q1—-(X;) foralli =1,...,n.

Challenges: Solving the constrained optimization problem is difficult due to
the nature of stochastic gradient descent (Padilla et al., 2020).

Yikun Zhang 23/35
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Discussion: Solution to the Non-Crossing Constrained Quantile Regression

Feasible Approaches:

e Penalized Method: With a large A > 0, we optimize the following problem:

(GG} = argmin 3 [0 (V- @ (X0) + s (V- Qo (X0)]

{Q+.@Q1—+}CF ;4

n
A Z ]l{P‘r(Yi—Q‘r(Xi))>P1—7—(Yi_Ql—T(Xi))}.
=1

Yikun Zhang 24/35
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Discussion: Solution to the Non-Crossing Constrained Quantile Regression

Feasible Approaches:

e Penalized Method: With a large A > 0, we optimize the following problem:

(GG} = argmin 3 [0 (V- @ (X0) + s (V- Qo (X0)]

{Q+.@Q1—+}CF ;4

n
A Z H{Pr(Yz‘—Qr(Xi))>p1—7—(Yi—Ql—r(Xi))}'
=1

o Redefined Objective (Padilla et al., 2020):

n

{71,1,712} = argmin Z

Y; — he(X;)) + oAy — (X)) —log [1 + P2(Xd)
{hl,hg}c}‘,:lpr( i 1(X3)) Z:m 1'{ i 1(X3) Og[ e ]}

i=1

and set Q. () = 71 (z) and Q1 (&) = 1 (z) + log [1 n eﬁzm] .

Yikun Zhang 24/35
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Motivation of Our Proposed Method: Conformal Inference

Rlgorithmic Learning
ina Random World
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Motivation of Our Proposed Method: Conformal Inference

What is conformal prediction/inference (Vovk et al., 1999, 2005;
Lei et al., 2018)?

e Given a training set {(X;,Y;)} C RP x R and the unknown
value Y, at a test point X, 1, it aims to construct a marginal
distribution-free prediction interval C(X,,+1) C R such that

P(Yn+1 € C(Xn+1)) >1—«
for some nominal miscoverage level « € (0, 1).

o Notes: The (1 — «)-confidence interval is defined as:

PE[Y|X]€C(X)) >1—a.

Yikun Zhang 26/35



DINISSIEN N TTERTS

Classical (Split) Conformal Prediction: A Preview

Observations
6 —— Predicted value
Split: prediction interval
4
- 5
0 -
_2 -
0 1 2 3 4 5
X

Figure 8: Classical (Split) Conformal Prediction (Average coverage:
91.4%; Average interval length: 2.91.)
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Classical (Split) Conformal Prediction: Detailed Procedures

© Splitthe trainingset D = {(X;,Y;)} C R? xRinto D = Dy UD¢:
® A proper training set Dy = {(X,,Y;) : i € I, },
® Acalibration set Do = {(X;,Y;) : i € Io}.
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® Acalibration set Do = {(X;,Y;) : i € Io}.

@ Fiti(z) + A({(X;,Y;:) : i € Z,}) via any regression algorithm A
on Dr.

©® Compute the absolute residuals on D¢ as:
R, =|Y; — n(X;)| with ieZ,.

@ Compute the (1 — ) empirical quantile of the absolute residuals,

Qi-a(R,12) = (1—a) <1 + ﬁ) -th empirical quantile of {R; : i € I} .
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Classical (Split) Conformal Prediction: Detailed Procedures

© Splitthe trainingset D = {(X;,Y;)} C R? xRinto D = Dy UD¢:
® A proper training set Dr = {(X,,Y;) : i € I, },
® Acalibration set Do = {(X;,Y;) : i € Io}.

@ Fiti(z) + A({(X;,Y;:) : i € Z,}) via any regression algorithm A
on Dr.

©® Compute the absolute residuals on D¢ as:
R, =|Y; — n(X;)| with ieZ,.

@ Compute the (1 — ) empirical quantile of the absolute residuals,

Qi-a(R,12) = (1—a) <1 + ﬁ) -th empirical quantile of {R; : i € I} .
2

@ The prediction interval at a new point X, is given by
C(Xn+1) = [(Xnt1) = Qr-a(R, I2), ((Xn+1) + Q1-a(R, I2)].

Yikun Zhang 28/35
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Conformalized Quantile Regression (Romano et al., 2019)

© Splitthe trainingset D = {(X;,Y;)} C R? xRinto D = Dy UD¢:
® A proper training set Dr = {(X,,Y;) : i € I, },
e Acalibration set Do = {(X;,Y;) : i € Io}.

® Fit {@%w, @ahigh} — A, {(X;,Y;) 1 i € Z, }) via any quantile
regression algorithm A, on Dy.

© Compute the conformity scores of C(x) = [@amw (), @amgh (:1:)]
on D¢ as:

By = max { Qu, (Xi) = Yi, Vi = Qaygy (X0} with i € To.
@ Compute the (1 — «) empirical quantile of the conformity scores,

Qi1-o(E, L) := (1—a) <1 + ﬁ) -th empirical quantile of {E; : i € Z,} .
2

@ The prediction interval at a new point X, is given by

C(Xit1) = [Qogy (Xnt1) = Qu-a (R, T2), Qo (Xi1) + Qi-a( R T2)]

Yikun Zhang 29/35
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Comparisons Between Split Conformal Prediction and Conformalized Quantile Regression

Observations = Predicted low and high quantiles
== Predicted value CQR: prediction interval

Split: prediction interval

(a) Classical (Split) Conformal (b) Conformalized Quantile
Prediction Regression
(Average coverage: 91.4%; Average (Average coverage: 91.06%; Average
interval length: 2.91). interval length: 1.99).

Yikun Zhang 30/35
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Conclusion and Future Works

What we have done:

¢ We proposed a user-preferred price prediction model via
(conditional) quantile regression with a Relu neural
network.

e The model is well-performed based on offline evaluations.
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Conclusion and Future Works

What we have done:

¢ We proposed a user-preferred price prediction model via
(conditional) quantile regression with a Relu neural
network.

e The model is well-performed based on offline evaluations.
Ongoing works:
¢ Handle the non-crossing properties/constraints of our
model.

¢ Extend the user-preferred price prediction model to other
scenarios and develop an unified modeling framework.
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Correctness of the (Conditional) Quantile Regression

Proof of Proposition 1.

Let g(u) = E [p- (Y — u)]. Some simple algebra show that

o) = [ = oy wdE()

— 00

-/ "y — w)dF(y) - / (1= )y — w)dF(y).

—00

Applying the Leibniz integral rule shows that

o0 u

Fw)=0 — —r / dF (y)+(1—7) / dF(y) = F(w)—r = 0.

u — 00

Therefore, u = ¢, is the smallest point satisfying F(u) — 7 =0
and will be unique when F is strictly monotonic on ¢, . O

Yikun Zhang
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