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Introduction to Our Hotel Ranking Task

A group of
candidate hotels (in
a searched city).

Ranking Algorithms*
=⇒

A well-sorted list of
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Objective of the Hotel Ranking Task

Return a list of hotels with user-preferred ones placed on the top.
⇒ Optimizing the conversion rate (on hotels with high commissions).

Features/Predictors: Xi =

V (i)
1 , ..., V (i)

q︸ ︷︷ ︸
Hotel Features

, U
(i)
1 , ..., U (i)

p︸ ︷︷ ︸
User Features

 for i = 1, ..., n.

Responses: Yi ∈ {0 : Not Booked, 1 : Booked} for i = 1, ..., n.
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How to Identify User-Preferred Hotels?

• The prices of hotels clicked/booked by a user quantify
his/her affordability.

• The price preferences of users on our platform are diverse.

Yikun Zhang 5 / 35
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Variety of User Price Preferences

(a) Users that prefer low-priced
hotels

(b) Users that prefer high-priced
hotels
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Multimodal Nature of User Price Preferences

The price preferences varies between different groups of users
on our platform.

Figure 2: Overall and group-specific distributions of actual booking
prices on December 6, 2021.

Yikun Zhang 7 / 35
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Main Objective: User-Preferred Hotel Price Prediction

Correctly predicting the preferred hotel prices or price intervals
is of great significance to our hotel ranking task!

• Our current re-ranking mechanism relies on the predicted
user-preferred prices.

Mathematically, given a user Xi = xi =
[
u
(i)
1 , ..., u

(i)
p

]
, we intend

to predict his/her preferred price interval[
Q̂l(xi), Q̂u(xi)

]
.

Here, the features u
(i)
j , j = 1, ..., p range from

• user behaviors (such as historical clicked/booked hotels,
user IDs, etc.)
• location information (such as city IDs, average GMV in that

city, etc.)
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Drawback of the Current Online Model (Baseline)

Current online model: It is a weighted sum of historical booked
prices, real-time clicked prices, and the specific quantile price in the
searched city.

Predicted Price =

∑
i ωtime · ωtype · ωabnormal · ωcity · Pricei∑

i ωtime · ωtype · ωabnormal · ωcity
.

• The choices weights ωtime, ωtype, ωabnormal, ωcity are heuristic and
outdated.

• The preferred price interval is symmetrically extended from the
above point estimate.

• The accuracy of the current predicted prices (or price intervals)
is also limited.

• ...

Yikun Zhang 9 / 35
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Our Proposed Method: Conditional Quantile Regression

Figure 3: (Smoothed) conditional distribution of historical booked/preferred
prices for a user with feature Xi = xi. The synthetic density function (blue
curve) is given by f(u|xi) =

1
Γ(5)·1005 · u4 exp

(
− u

100

)
.
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Our Proposed Method: Conditional Quantile Regression

Given the conditional cumulative distribution function
F (y|X = x) of booked prices, we pursue an interval[

Qτ (x), Q1−τ (x)
]
,

where Qτ (x) = inf {y : F (y|X = x) ≥ τ} and τ ∈ (0, 1/2].†

Figure 4: τ and (1− τ) quantile of F (y|X = x) with τ = 0.1.

†Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica:
Journal of the Econometric Society, 33-50.

Yikun Zhang 11 / 35
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How to Fit the Conditional Quantile?

The conditional quantile Qτ (x) is the solution to the following
optimization problem:

Qτ (x) = argmin
q

E [ρτ (Y − q)|X = x] , (1)

where

ρτ (ξ) = ξ
[
τ − 1{ξ<0}

]
=

{
τξ, ξ ≥ 0,

−(1− τ)ξ, ξ < 0
(2)

is the so-called “pinball” loss (Koenker and Bassett, 1978; Firpo
et al., 2009; Steinwart and Christmann, 2011).
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Introduction Methodology: Quantile Regression Offline Evaluations Discussion and Future Works References

How to Fit the Conditional Quantile?

The conditional quantile Qτ (x) is the solution to the following
optimization problem:

Qτ (x) = argmin
q

E [ρτ (Y − q)|X = x] , (1)

where

ρτ (ξ) = ξ
[
τ − 1{ξ<0}

]
=

{
τξ, ξ ≥ 0,

−(1− τ)ξ, ξ < 0
(2)

is the so-called “pinball” loss (Koenker and Bassett, 1978; Firpo
et al., 2009; Steinwart and Christmann, 2011).

Yikun Zhang 12 / 35



Introduction Methodology: Quantile Regression Offline Evaluations Discussion and Future Works References

“Pinball Loss”

Remark:
• When τ = 0.5, the aforementioned optimization problem

(1) recovers the absolute deviation problem.
• The loss is robust to outliers (Hampel, 1971; John, 2015).
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Correctness of the (Conditional) Quantile Regression

Proposition

Given the conditional distribution function F (y|X = x),

Qτ (x) = inf {y : F (y|X = x) ≥ τ}

is the solution to (1).
More generally, given any càdlàg function F (y),

qτ = inf {y : F (y) ≥ τ}

is the solution to the unconditional quantile regression prob-
lem argminq E [ρτ (Y − q)].

Yikun Zhang 14 / 35
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Quantile Regression in Practice

Theoretically, Qτ (x) = argminq E [ρτ (Y − q)|X = x].

Practically, given the training set with clicked/booked hotel
entries

{(Xi, Yi)} =
{([

U
(i)
1 , ..., U (i)

p

]
, Yi

)}
,

we solve the following empirical risk minimization (ERM)
problem:

Q̂τ = argmin
Q∈F

1

n

n∑
i=1

ρτ (Yi −Q(Xi)) ,

where F is the function class spanned by our (neural network)
models.

Yikun Zhang 15 / 35
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Fitting the Empirical Quantiles Q̂τ and Q̂1−τ

Input: {(Xi, Yi)} =
{([

U
(i)
1 , ..., U

(i)
p

]
, Yi

)}
, where the continuous features

are standardized and discrete ones are converted to embedding vectors.

Architecture: One shared hidden layer 512× 200 with additional separate
200× 100× 1 full-connected Relu layers.

Figure 5: Double-tower architecture (image credit: Xianzhang Xiang)

Objective:
{
Q̂τ , Q̂1−τ

}
= argmin

{f,g}⊂F

1
n

n∑
i=1

[
ρτ (Yi − f(Xi)) + ρ1−τ (Yi − g(Xi))

]
with τ = 0.1.

Yikun Zhang 16 / 35
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Why do we use Relu Neural Network? (Minimax Theory)

Assume that
• the true quantile function Qτ belongs to the Hölder class H or Besov

space B.
• the number of layers L satisfies log2(n) ≲ L ≲ n

p
2s+p .

• the maximum norm of network coefficients ∥β∥max ≲ n
p

2s+p log n.

Then,
∥Q̂τ −Qτ∥2ℓ2 ≤ C · (log n)2n− 2s

2s+p ,

where s is the smoothness parameter, p is the dimension of the feature
space, and n is the sample size (Schmidt-Hieber, 2020; Padilla et al., 2020).

Based on the nonparametric theory (Wasserman, 2006; Tsybakov, 2008), this
rate of convergence is indeed minimax up to a log factor!

f̂∗ is minimax

⇐⇒ sup
f∈H

E
[(

f̂∗(x0)− f(x0)
)2

]
= inf

f̂n

sup
f∈H

E
[(

f̂n(x0)− f(x0)
)2

]
,

where the infimum is taken among all the estimators.

Yikun Zhang 17 / 35
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Summary of Our Proposed Model

• Goal: Preferred Price Interval
[
Qτ (x), Q1−τ (x)

]
with

Qτ (x) = inf {y : F (y|X = x) ≥ τ} and τ ∈ (0, 1/2].

• Theoretical Solution: Conditional Quantile Regression,

Qτ (x) = argmin
q

E [ρτ (Y − q)|X = x] .

• Practical Model: Empirical Risk Minimization with Relu
Networks,

Q̂τ = argmin
Q∈F

1

n

n∑
i=1

ρτ (Yi −Q(Xi)) .

• Minimax Guarantee: ∥Q̂τ −Qτ∥2ℓ2 → 0 as n→∞.

Yikun Zhang 18 / 35
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Other Potential Choices of Quantile Regression Models

• Quantile Regression Forests (Meinshausen, 2006): The
random forests method has the uniform consistency in
estimating the cumulative distribution function (CDF) of
Y |X = x.

• k-Nearest-Neighbors (kNN) Fused Lasso (Madrid Padilla
et al., 2020; Ye and Padilla, 2021): similar to our ERM
problem but with a fused lasso penalty term based on
kNNs.

• Quadratic Programming and Reproducing Kernel Hilbert Space
(RKHS) Methods (Takeuchi et al., 2006), Nadaraya-Watson
Nonparametric Regression Estimator (Huang and Nguyen,
2018), etc.

Yikun Zhang 19 / 35
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Evaluation Metrics

• Coverage Accuracy:

ACC(Y, Î) = 1

n

n∑
i=1

1{Yi∈[Î(xi)]},

where Y = {Yi}ni=1 is a collection of booked hotel prices
and Î(xi) =

[
Q̂τ (xi), Q̂1−τ (xi)

]
is the predicted preferred

price interval for the user with feature xi.

• Average Interval Length:

Average Length(Î) = 1

n

n∑
i=1

∣∣∣Q̂τ (xi)− Q̂1−τ (xi)
∣∣∣ .

Yikun Zhang 20 / 35
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Neural Network Quantile Regression on the “My Location” Scenario

Cov. Acc.
(fh_prices)

Cov. Acc. (or-
der prices)

Average Inter-
val Length

Baseline Model 0.7521 0.8019 283.8624
Our NN QR 0.8718 0.8593 233.5811

Table 1: Comparison between our neural network quantile regression
model and the current online model (baseline) on the “My Location”
scenario.

Yikun Zhang 21 / 35
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Neural Network Quantile Regression on the “Main Ranking” Scenario

Cov. Acc.
(fh_prices)

Cov. Acc.
(order
prices)

Average
Interval
Length

Baseline Interval I 0.5590 0.5804 213.1197
Baseline Interval II 0.8593 0.8534 597.1224

Our NN QR (Before calibration) 0.7883 0.7351 317.5999
Our NN QR (After calibration) 0.9268 0.8954 482.3805

Table 2: Comparison between our neural network quantile regression
model and the current online model (baseline) on the “Main Ranking”
scenario.

• Notes: The calibration means that we extend our predicted interval as:[
Q̂τ (xi)− α ·

∣∣∣Q̂τ (xi)− Q̂1−τ (xi)
∣∣∣ , Q̂1−τ (xi) + α ·

∣∣∣Q̂τ (xi)− Q̂1−τ (xi)
∣∣∣ ],

where α = 0.3 ∼ 0.5.
Yikun Zhang 22 / 35
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Discussion: Non-Crossing Property of Quantile Regression

Recall that our current optimization framework is{
Q̂τ , Q̂1−τ

}
= argmin

{Qτ ,Q1−τ}⊂F

1

n

n∑
i=1

[
ρτ (Yi −Qτ (Xi))+ρ1−τ (Yi −Q1−τ (Xi))

]
.

However, a constraint is required for the monotonicity of quantiles, i.e., for
any τ ∈ (0, 1/2], we should solve the constrained optimization problem:{
Q̂τ , Q̂1−τ

}
= argmin

{Qτ ,Q1−τ}⊂F

1

n

n∑
i=1

[
ρτ (Yi −Qτ (Xi)) + ρ1−τ (Yi −Q1−τ (Xi))

]
subject to Qτ (Xi) ≤ Q1−τ (Xi) for all i = 1, ..., n.

Challenges: Solving the constrained optimization problem is difficult due to
the nature of stochastic gradient descent (Padilla et al., 2020).

Yikun Zhang 23 / 35
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Discussion: Solution to the Non-Crossing Constrained Quantile Regression

Feasible Approaches:

• Penalized Method: With a large λ > 0, we optimize the following problem:{
Q̂τ , Q̂1−τ

}
= argmin

{Qτ ,Q1−τ}⊂F

n∑
i=1

[
ρτ (Yi −Qτ (Xi)) + ρ1−τ (Yi −Q1−τ (Xi))

]
+ λ ·

n∑
i=1

1{ρτ (Yi−Qτ (Xi))>ρ1−τ (Yi−Q1−τ (Xi))}.

• Redefined Objective (Padilla et al., 2020):

{
ĥ1, ĥ2

}
= argmin

{h1,h2}⊂F

n∑
i=1

ρτ (Yi − h1(Xi)) +
n∑

i=1

ρ1−τ

{
Yi − h1(Xi) − log

[
1 + e

h2(Xi)
]}

and set Q̂τ (x) = ĥ1(x) and Q̂1−τ (x) = ĥ1(x) + log
[
1 + eĥ2(x)

]
.
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Motivation of Our Proposed Method: Conformal Inference

Figure 6: Algorithmic Learning in a Random World (Vovk et al., 2005).

(a) Jing Lei (b) Larry Wasserman (c) Emmanuel Candès
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Motivation of Our Proposed Method: Conformal Inference

What is conformal prediction/inference (Vovk et al., 1999, 2005;
Lei et al., 2018)?

• Given a training set {(Xi, Yi)} ⊂ Rp × R and the unknown
value Yn+1 at a test point Xn+1, it aims to construct a marginal
distribution-free prediction interval C(Xn+1) ⊂ R such that

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α

for some nominal miscoverage level α ∈ (0, 1).

• Notes: The (1− α)-confidence interval is defined as:

P (E[Y |X] ∈ C(X)) ≥ 1− α.
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Classical (Split) Conformal Prediction: A Preview

Figure 8: Classical (Split) Conformal Prediction (Average coverage:
91.4%; Average interval length: 2.91.)
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Classical (Split) Conformal Prediction: Detailed Procedures

1 Split the training setD = {(Xi, Yi)} ⊂ Rp×R intoD = DT ∪DC :
• A proper training set DT = {(Xi, Yi) : i ∈ I1},
• A calibration set DC = {(Xi, Yi) : i ∈ I2}.

2 Fit µ̂(x)← A ({(Xi, Yi) : i ∈ I1}) via any regression algorithm A
on DT .

3 Compute the absolute residuals on DC as:

Ri = |Yi − µ̂(Xi)| with i ∈ I2.

4 Compute the (1− α) empirical quantile of the absolute residuals,

Q1−α(R, I2) := (1−α)

(
1 +

1

|I2|

)
-th empirical quantile of {Ri : i ∈ I2} .

5 The prediction interval at a new point Xn+1 is given by

C(Xn+1) = [µ̂(Xn+1)−Q1−α(R, I2), µ̂(Xn+1) +Q1−α(R, I2)] .
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Conformalized Quantile Regression (Romano et al., 2019)

1 Split the training setD = {(Xi, Yi)} ⊂ Rp×R intoD = DT ∪DC :
• A proper training set DT = {(Xi, Yi) : i ∈ I1},
• A calibration set DC = {(Xi, Yi) : i ∈ I2}.

2 Fit
{
Q̂αlow , Q̂αhigh

}
← Aq ({(Xi, Yi) : i ∈ I1}) via any quantile

regression algorithm Aq on DT .

3 Compute the conformity scores of Ĉ(x) =
[
Q̂αlow(x), Q̂αhigh(x)

]
on DC as:

Ei := max
{
Q̂αlow(Xi)− Yi, Yi − Q̂αhigh(Xi)

}
with i ∈ I2.

4 Compute the (1− α) empirical quantile of the conformity scores,

Q1−α(E, I2) := (1−α)

(
1 +

1

|I2|

)
-th empirical quantile of {Ei : i ∈ I2} .

5 The prediction interval at a new point Xn+1 is given by

C(Xn+1) =
[
Q̂αlow(Xn+1)−Q1−α(R, I2), Q̂αhigh(Xn+1) +Q1−α(R, I2)

]
.
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Comparisons Between Split Conformal Prediction and Conformalized Quantile Regression

(a) Classical (Split) Conformal
Prediction

(Average coverage: 91.4%; Average
interval length: 2.91).

(b) Conformalized Quantile
Regression

(Average coverage: 91.06%; Average
interval length: 1.99).
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Conclusion and Future Works

What we have done:
• We proposed a user-preferred price prediction model via

(conditional) quantile regression with a Relu neural
network.
• The model is well-performed based on offline evaluations.

Ongoing works:
• Handle the non-crossing properties/constraints of our

model.
• Extend the user-preferred price prediction model to other

scenarios and develop an unified modeling framework.
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Comments or Questions?
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Correctness of the (Conditional) Quantile Regression

Proof of Proposition 1.

Let g(u) = E [ρτ (Y − u)]. Some simple algebra show that

g(u) =

∫ ∞

−∞
ρτ (y − u)dF (y)

=

∫ ∞

u

τ(y − u)dF (y)−
∫ u

−∞
(1− τ)(y − u)dF (y).

Applying the Leibniz integral rule shows that

g′(u) = 0 ⇐⇒ −τ
∫ ∞

u

dF (y)+(1−τ)
∫ u

−∞
dF (y) = F (u)−τ = 0.

Therefore, u = qτ is the smallest point satisfying F (u) − τ = 0
and will be unique when F is strictly monotonic on qτ .
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