
STAT 534
Lecture 6

Kernel Density Estimation, Regression and Classification
April 18, 2019

Instructor: Marina Meilă

Scribes: Yikun Zhang∗ (yikun@uw.edu)

1 Introduction

In this lecture, we will discuss Nearest-Neighbor predictors and Kernel Density Estima-
tion approaches on classification and regression problems.

1.1 Classification and Regression Problem

The classification and regression problems fall in a general category of machine learning
tasks, the so-called supervised learning. Given a random pair (X,Y) ∈ X ×Y, the basic
goal in supervised learning is to construct a prediction function f such that Y = f(X)
based on some training data. We often call X the input, predictor, feature, independent
variable, etc., and Y the output, response, dependent variable, etc. Typically, the input
space of X, i.e., X , would simply be Rd and the training data comprises some (i.i.d.)
samples from (X,Y), D = {(xi, yi) ∈ Rd × Y, i = 1, ..., N}.
The difference between classification and regression problems emerges on the type of
output variables.

• Classification: The output Y is qualitative and assumes values in a finite set. For
instance, Y = {−1, 1}.

• Regression: The output Y is a quantitative measurement, i.e., Y ⊂ R.

In a nutshell, the distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and classification
when we predict qualitative outputs. These two tasks have a lot in common, and in
particular both can be viewed as a task in function approximation.[1]

1.2 Memory-Based Learning

The main topics of today’s lecture, nearest-neighbor predictors and kernel density es-
timation methods, can be classified as examples of memory-based learning (sometimes
called instance-based learning) within the realm of machine learning. Memory-based
learning is based on the assumption that in learning a cognitive task from experience
people do not extract rules or other abstract representations from their experience, but
reuse their memory of that experience directly.[2] In other words, it compares new data
instances with those seen in the training data, which have been stored in memory. Since

∗Department of Statistics, University of Washington

1

it constructs hypotheses directly from the training instances themselves, the hypothesis
complexity can grow with the data[3]: in the worst case, a hypothesis is a list of n training
items and the computational complexity of classifying a single new instance is O(n).

1.3 Nonparametric Model

On the other hand, both Nearest-Neighbor predictors and kernel density estimation
approaches are some vivid examplifications of nonparametric models, whose structures
are not specified a priori but learned from data. This means that these statistical models
are infinite-dimensional, in the sense that the number and nature of the parameters are
grown with the size of data.

2 Nearest-Neighbor Predictor

Given a training data D = {(xi, yi) ∈ Rd × Y, i = 1, ..., N}, the main idea of Nearest-
Neighbor predictor is to assign the label or value of a new instance x as follows:

1. Find the example xi that is nearest to x under a certain distance metric, says
Euclidean distance. Mathematically, i = arg min

j∈{1,...,N}
||x− xj ||2

2. Assign x the label or value yi.

In practice, one uses the K nearest neighbors of x (with K = 3, 5 or larger). Then

• For Classification: f(x) = the most frequent label among K nearest neighbors
(the so-called Majority Vote).

• For Regression: f(x) = 1
K

∑
i neighbor of x

yi = mean of neighbors’ values.

Figure 1 delineates an example when we apply the K-Nearest-Neighbor method on a bi-
nary classification problem, where those solid curves indicate the decision boundaries of
two classifiers. In a binary classification problem, the decision boundary of a classifier
is a hypersurface that partitions the underlying vector space into two sets, while the
classifier will assign all the points on one side of the decision boundary to one class and
all those on the other side to the other class. Upon the decision boundary, the output
label of a classifier is ambiguous.[4] As shown by Figure 1, K serves as the smoothing
parameter of the K-Nearest-Neighbor classifier, since the decision boundary becomes
smoother as the value of K increases.

Remark. The decision boundary for a K-Nearest-Neighbor classifier is piecewise linear.

3 Kernel Density Estimation

Let x1, ..., xN ∈ Rd be an independent, identically distributed random sample from an
unknown distribution P with density function p. Then the Kernel Density Estima-
tion can be expressed as

p̂n(x) =
1

Nhd

N∑
i=1

b

(
x− xi

h

)
,

2

(a) 1-Nearest-Neighbor
(b) 15-Nearest-Neighbor

Figure 1: A Binary Classification Problem Using 1-Nearest-Neighbor and 15-Nearest-
Neighbor Classifiers with Decision Boundaries[1]

where b : Rd → R is a smooth function such that b(x) ≥ 0 and[5]∫
b(x)dx = 1,

∫
x · b(x)dx = 0, and σ2

b ≡
∫
x2 · b(x)dx > 0,

and h > 0 is the bandwidth parameter that controls the amount of smoothing. b is called
a kernel function. Two common examples of b(x) are[6]

(Gaussian kernel) b(x) =
exp(− ||x||

2

2)

v1,d
, v1,d =

∫
exp

(
−||x||

2

2

)
dx,

(Spherical Kernel) b(x) =
I(||x|| ≤ 1)

v2,d
, v2,d =

∫
I(||x|| ≤ 1)dx.

Optional requirements on b are: (i) symmetric with respect to x and xi, that is, b(x, xi) =

b(xi, x) = b
(
x−xi

h

)
; (ii) Radial symmetry; (iii) bounded support; (iv) higher order

smoothness conditions, etc.
As with kernel regression, the choice of kernel b is not crucial, but the choice of band-

width h is important.[5] Figure 2 shows density estimates with several different band-
widths using a part of the NACC (National Alzheimers Coordinating Center) Uniform
Dataset, version 3.0 (March 2015).[6]

Roughly speaking, the computational cost of kernel density estimation is O(Nd),
since we need to calculate the (Euclidean) distance of two d-dimensional data points. In
Section 5 and subsequent lectures, we will introduce several efficient neighbor searching
methods when the number of data points N is large.

†For instance, see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html
for details

3

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html

Figure 2: Kernel Density Estimation on Part of NACC Data. Left panel: undersmoothed.
Middle panel: just right (bandwidth chosen by the default rule in R)†. Right panel: over-
smoothed.

4 Kernel Regression and Classification

4.1 Kernel Regression

In any kernel regression setting, the conditional expectation of the response Y relative
to the input X can be written as

f(X) = E(Y |X).

As for a training data with i.i.d. samples D = {(xi, yi) ∈ Rd × R, i = 1, ..., N}, we can
always write

yi = f(xi) + εi, i = 1, ..., n,

where εi, i = 1, ..., n are i.i.d. random errors with mean zero. Like the K-Nearest-
Neighbor approach, the kernel regression interpolates the value of a new data instance
based on the neighbor values of this instance, but in a more “smoothed” way. Suppose

that bh(x, xi) = b
(
x−xi

h

)
, where b is a kernel function defined in Section 3. Then the

kernel regressor can be written as

f̂(x) =

N∑
i=1

βi(x) · bh(x, xi) · yi,

where βi’s are coefficients. If we estimate f as a locally weighted average, i.e.,
N∑
i=1

βibh(x, xi) =

1, then βi = 1
N∑

j=1
bh(x,xj)

, j = 1, ..., N and the estimator becomes

f̂(x) =

N∑
i=1

bh(x, xi)∑N
j=1 bh(x, xj)

· yi,

which is the well-known Nataraya-Watson kernel estimator.[5] In this estimator (or

regressor), f̂(x) is always a convex combination of yi’s and the weights are proportional

4

to bh(x, xi).

Remark. The Nataraya-Watson estimator is biased if the density of X varies around x.

To alleviate the biased problems for kernel estimators, one can resort to a general-
ization of kernel regression called local linear regression. The procedures go as follows.

1. Given a query point x, compute the weight function wi = bh(x, xi) for all i =
1, ..., N .

2. Solve the weighted sums of squares min
β,β0

N∑
i=1

wi(y
i− βTxi− β0)2 to obtain β, β0

(β, β0 depend on x through wi).
‡

3. Calculate f̂(x) = βTx+ β0.

Remark. The Nataraya-Watson estimator solves a local linear regression with fixed
β = 0.

4.2 Kernel (Binary) Classification

Given the training data D = {(xi, yi) ∈ Rd × {Class1, Class2}, i = 1, ..., N}, we can
encode the binary responses yi’s into {−1, 1}. Then the kernel binary classifier can
be written as

f̂(x) ∝
N∑
i=1

yi · b
(
x− xi

h

)
,

where b is a kernel function defined in Section 3. The prediction is based on the sign of
f̂(x), i.e.,

y(x) =

{
1 (or Class 1) if f̂(x) > 0,

−1 (or Class 2) if f̂(x) < 0.

The plug-in estimator {x ∈ Rd : f̂(x) = 0} of the solution manifold {x ∈ Rd : f(x) =
0} is the decision boundary of the kernel classifier. In addition, the decision boundary for
a kernel binary classifier can be viewed as a plug-in estimator of the density level-set at
level 0, for which asymptotic properties and visualization techniques have been analyzed
and proposed. See [7] for details.

5 K-D Trees & Ball Trees

Both K-Nearest-Neighbor and kernel prediction methods involve scanning the whole
dataset for every single prediction. Given training data D = {(xi, yi) ∈ Rd × Y, i =
1, ..., N},

• for K-Nearest Neighbor, predicting f(x) for a single new instance x involves com-
puting N distances in a d-dimensional space. The computational cost is approxi-
mately O(Nd).

‡See section 5.4 in [5] for detailed calculation.

5

• for kernel methods, finding the data points within the support of the kernel func-
tion, usually a d-dim ball with radius r, also involves computing the distances of a
single x to all training data points.

The neighbor search (or computing pairwise distances of training data points) is a
polynomial-time process but still computational expensive, especially when the dimen-
sion d is high. Can we design some algorithms that are more efficient?
The answer is Yes, if we index (i.e. preprocess) the training data. Indexing here means
organizing the data in a way that makes finding the neighbors of any given point fast. In
particular, with indexing, searching neighbors of a given point x does not require com-
paring x with all N data points.
The examples of indexing methods include,

• K-D trees

• Ball trees

• A-D trees (for discrete data)

• Locality Sensitive Hashing

• ... (many other methods with guarantees)

5.1 K-D Trees

A K-D tree (short for k-dimensional tree) is a binary tree whose leaf nodes are k-
dimensional points and every non-leaf node corresponds to an implicit partition of the
data space into two hyper-rectangular regions. Given a data set D = {(xi, yi) ∈ Rd ×
Y, i = 1, ..., N} (yi’s would not be used in the tree construction), each node j stores:

• a subset of the data Dj ⊂ D
• a d-dimensional rectangle with Rj = (rj,min, rj,max), j = 1, ..., d, where rj,min =

min
Dj

xij , rj,max = max
Dj

xij

• other statistics of Dj , such as the number of nodes, mean, median, variance, etc.

Since there are many possible ways to choose axis-aligned splitting planes, there exist
many different ways to construct a K-D tree for any given data set. Algorithm 1 illus-
trates a version of K-D tree construction in which the longest dimension of Rj would be
split.

Figure 3a shows an example of KD trees and construction procedures. If a balanced
K-D tree (i.e., the maximal number of levels below the root is as small as possible)
is required, one can cycle through the axes used to select the splitting planes. For
example, in a 3-dimensional tree, the root would have an x-aligned plane, the root’s
children would both have y-aligned planes, the root’s grandchildren would all have z-
aligned planes, the root’s great-grandchildren would all have x-aligned planes, the root’s
great-great-grandchildren would all have y-aligned planes, and so on.[8]

5.2 Nearest Neighbor Search via K-D Tree

The nearest neighbour search algorithm aims to find the point in the data set that is
nearest to a given query point. This search can be done efficiently by using the tree
properties to quickly eliminate large portions of the search space.[9]

6

Algorithm 1 K-D Tree Construction

Input: (labeled) training set D (labels are not used in the tree construction)
Initialize the tree root R0 with D0 = D
while Leaf nodes can be split do

Choose a leaf node j with |Dj | > N0 points (N0 is a threshold)

1. Find the longest dimension of Rj , i.e., k = arg max
j=1,...,d

(rj,max − rj,min) and set

r = (rk,max − rk,min)/2.

2. Split Dj into Dj,left and Dj,right with xi ∈ Dj,left iff xik ≤ r, xik ∈ Dj .
3. Create new leaves Rj,left, Rj,right storing Dj,left,Dj,right and their respective

bounding boxes and other statistics.

end while

(a) A K-D Tree and Construction Procedures (b) An Example of Ball Trees

Figure 3: K-D Trees and Ball Trees

Given a query point x, a search radius r, and a data set D indexed by a K-D tree T , we
aim to find all the points in D that are in the ball Bx(r) = {xi ∈ D : ||xi−x|| ≤ r} (i.e.,
the r-neighbors of x).
The efficiency of nearest neighbor search via K-D trees is guaranteed by the following
observations:

• Checking if Bx(r) intersects with a hyper-rectangle R is fast. =⇒ If Bx(r)∩R = ∅,
then no data points in R can be neighbors of x.

• Checking if Bx(r) contains a hyper-rectangle R is fast. A naive algorithm is to
compute the distances of all the vertices to x and check whether they are all ≤ r.
=⇒ If Bx(r) ⊃ R, then all data points in R are neighbors.

Algorithm 2 presents a way to retrieve nearest neighbors of a query point x via a pre-
constructed K-D tree.

Nearest-Neighbor search via K-D trees may exhibit inefficiency when the data dimen-
sion d is large, since the data points are far away from each other in high dimensional

7

Algorithm 2 K-D Tree Neighbors Retrieval Algorithm

Input: (x, r, T), where x is a query point, r is a search distance, and T is a K-D tree.
Initialize the set of neighbors Nr = ∅, R = root(T)
Call the function ProcessNode(x, r,R,Nr) recursively

ProcessNode(x, r,R,Nr):
if Bx(r) ∩Rj = ∅ then

return
else if Bx(r) ⊃ Rj then

Nr ← Nr ∪Rj
return

else if Rj is a leaf then
for xi ∈ Dj , if ||x− xi|| ≤ r,Nr ← Nr ∪ {xi}
return

else
call ProcessNode(x, r,Rj,left, Nr)
call ProcessNode(x, r,Rj,right, Nr)
return

end if

space. In this case, most of the points in the tree will be evaluated and nearest-neighbor
search via K-D trees will end up being a needlessly fancy brute search. One remedy
to this issue is to construct Ball Trees, where every node defines a d-dimensional ball
containing a subset of the points to be searched. Several existing ball tree construction
algorithms are available at [10]. Figure 3b shows an example of ball trees.

References

[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Element of Statistical
Learning: Data Mining, Inference, and Prediction. Second Edition. Springer Series
in Statistics. Springer-Verlag New York, 2009.

[2] Walter Daelemans and Antal van den Bosch. Memory-Based Language Processing.
New York, NY, USA: Cambridge University Press, 2009.

[3] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Third
Edition. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[4] Wikipedia Contributors. Decision boundary. [Online; Accessed 20-April-2019]. 2018.
url: https://en.wikipedia.org/wiki/Decision_boundary.

[5] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics).
Berlin, Heidelberg: Springer-Verlag, 2006.

[6] Yen-Chi Chen. “A tutorial on kernel density estimation and recent advances”. In:
Biostatistics & Epidemiology 1.1 (2017), pp. 161–187.

8

https://en.wikipedia.org/wiki/Decision_boundary

[7] Yen-Chi Chen, Christopher R. Genovese, and Larry Wasserman. “Density Level
Sets: Asymptotics, Inference, and Visualization”. In: Journal of the American Sta-
tistical Association 112.520 (2017), pp. 1684–1696. eprint: https://doi.org/10.
1080/01621459.2016.1228536.

[8] Mark de Berg et al. “Orthogonal Range Searching”. In: Computational Geometry:
Algorithms and Applications. Springer Berlin Heidelberg, 1997, pp. 93–117. url:
https://doi.org/10.1007/978-3-662-03427-9_5.

[9] Wikipedia Contributors. k-d tree. [Online; Accessed 20-April-2019]. 2019. url:
https://en.wikipedia.org/wiki/K-d_tree#cite_note-compgeom-2.

[10] Stephen M. Omohundro. Five Balltree Construction Algorithms. 1989. url: ftp:
//ftp.icsi.berkeley.edu/pub/techreports/1989/tr-89-063.pdf.

9

https://doi.org/10.1080/01621459.2016.1228536
https://doi.org/10.1080/01621459.2016.1228536
https://doi.org/10.1007/978-3-662-03427-9_5
https://en.wikipedia.org/wiki/K-d_tree#cite_note-compgeom-2
ftp://ftp.icsi.berkeley.edu/pub/techreports/1989/tr-89-063.pdf
ftp://ftp.icsi.berkeley.edu/pub/techreports/1989/tr-89-063.pdf

	Introduction
	Classification and Regression Problem
	Memory-Based Learning
	Nonparametric Model

	Nearest-Neighbor Predictor
	Kernel Density Estimation
	Kernel Regression and Classification
	Kernel Regression
	Kernel (Binary) Classification

	K-D Trees & Ball Trees
	K-D Trees
	Nearest Neighbor Search via K-D Tree

