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Assume that yi = f (xi) + ϵi with (xi, ϵi) ∼ Px × Pϵ for i = 1, ...,n.
• Training Risk: 1

n

∑n
i=1 L (h(xi), yi) for some loss function L.

• Test Risk: E(x,y)∼Pxy [L(h(x), y)].

Figure 1: Classical bias-Variance trade-off (Belkin et al., 2019).
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Figure 2: Training and test errors of two-layer Neural Networks (NNs) with
different number of hidden units H (Neyshabur et al., 2014).
• Notes: The number of parameters is H(d + K) for each two-layer NNs, where d is the number of
features and K is the size of the output layer.
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Figure 3: An extension of the classical bias-variance trade-off framework: the
“double descent” risk curve (Belkin et al., 2019).
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Data: {(yi, xi)}n
i=1 with xi ∈ Rp, yi ∈ R from the linear model

yi = xT
i β + ϵi with (xi, ϵi)

i.i.d.∼ Px × Pϵ,

where E(xi) = 0,Cov(xi) = Σ, and E(ϵi) = 0,Var(ϵi) = σ2.

• Isotropic features: Σ = Ip.

• Latent space features: Σ = WWT + Ip with W ∈ Rp×d, d≪ p and β lies
in the span of the columns of W.

• Nonlinear features: xi = φ(Wzi) with W ∈ Rp×d, zi ∼ N(0, Id), and φ is
a nonlinear activation function.

Question: Why do we study overparametrization on simple linear
models?

Overparametrized Linear Models
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“Lazy training” regime (Geiger et al., 2020): model parameter
θ = (ai,Wi; i = 1, ...,N) stays close to the initialization θ0 as θ = θ0 +∆,
and we approximate the two-layer neural network model

f (z; θ) ≡ f (z;a,W) =

N∑
i=1

ai · φ
(
wT

i z
)

with ai ∈ R,wi ∈ Rp

by

f (z; θ) ≈ f (z; θ0) +∇f (z; θ0)
T∆

≈ f (z; θ0) +∇af (z;a0,W0)
T∆a +∇W f (z;a0,W0)

T∆W

= f (z; θ0) +

N∑
i=1

∆ai · φ
(
wT

0,ixi
)

︸ ︷︷ ︸
Random feature model

+

N∑
i=1

a0,izT∆wi · φ′ (wT
0,iz

)
︸ ︷︷ ︸

Neural tangent kernel model

.

• The approximation is still nonlinear in the input z but linear in the parameter β = ∆.
• The above arguments can be made rigorous in Jacot et al. (2018); Du et al. (2019);

Allen-Zhu et al. (2019).

Connecting Linear Models to Neural Networks
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Overparametrization ratio: γ :=
p
n ∈ (0,∞).

Given the training data Y = (y1, ..., yn)
T ∈ Rn and X =

xT
1
...

xT
n

 ∈ Rn×p, we

solve for the usual least squares estimator β̂ = (XTX)−1XTY when γ ≤ 1
(rigorously, X need to have full column rank).

Question: What if γ > 1 with an underdetermined system of linear
equations Y = Xβ?

Minimum ℓ2-norm least squares regression:

β̂ = argmin
{
||b||2 : b minimizes ||Y− Xb||22

}
.

Minimum ℓ2-Norm Least Squares Regression
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When γ > 1, we can solve the minimum ℓ2-norm least squares
regression β̂ = argmin

{
||b||2 : b minimizes ||Y− Xb||22

}
by two different

methods:

1 Gradient descent: β(k+1) ← β(k) + tXT
(
Y− Xβ(k)

)
, k = 0, 1, ...,

where β(0) = 0 and t ∈
(

0, 1
λmax(XTX)

)
with λmax(XTX) being the

largest eigenvalue of XTX.

2 Analytic solution (“Ridgeless”): Consider the ridge regression

β̂λ = argmin
b∈Rp

[
1
n
||Y− Xb||22 + λ ||b||22

]
=

(
XTX + nλI

)−1
XTY

(*)
= XT (XXT + nλI

)−1
Y,

(1)

and β̂ = limλ→0+ β̂λ, where we use the “kernel tricks” in (*).

Solving Minimum ℓ2-Norm Least Squares Regression
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We evaluate the minimum ℓ2-norm least squares regression through the
out-of-sample prediction risk with x0 ∼ PX as:

RX

(
β̂;β

)
= E

[(
xT

0 β̂ − xT
0β

) ∣∣X]
= E

[∣∣∣∣∣∣β̂ − β
∣∣∣∣∣∣2
Σ

∣∣X]
=

∣∣∣∣∣∣E(β̂|X)− β
∣∣∣∣∣∣2
Σ︸ ︷︷ ︸

BX(β̂;β)

+Trace
[
Cov(β̂|X)Σ

]
︸ ︷︷ ︸

VX(β̂;β)

,

where ||x||2Σ = xTΣx.

If we write the minimum ℓ2-norm least squares estimator as
β̂ = (XTX)+XTY with (XTX)+ being the pseudoinverse of XTX, then

BX(β̂;β) = βTΠΣΠβ and VX(β̂;β) =
σ2

n
Trace(Σ̂+Σ),

where Σ̂ = XTX
n and Π = I − Σ̂+Σ̂; see Lemma 1 in Hastie et al. (2022).

Out-of-Sample Prediction Risk
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Under the linear model setting,

y = xTβ + ϵ with (x, ϵ) ∼ Px × Pϵ,

where E(x) = 0,Cov(x) = Σ, and E(ϵ) = 0,Var(ϵ) = σ2.

If x has a finite 4-th moment and λmin(Σ) ≥ c > 0 for some constant c,
then as n, p→∞with p/n→ γ < 1,

lim
n→∞

RX(β̂, β) = σ2 γ

1− γ
;

see Proposition 2 in Hastie et al. (2022), where the proof leverages the
Marchenko-Pastur theorem (Marčenko and Pastur, 1967).

• Notes: In the underparameterized case (γ < 1),
BX(β̂, β) = βTΠΣΠβ = 0 because Π = I − Σ̂−1Σ̂ = 0.

Underparametrized Asymptotics (γ < 1)
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Recall the linear model setting:

y = xTβ + ϵ with (x, ϵ) ∼ Px × Pϵ,

where E(x) = 0,Cov(x) = Σ, and E(ϵ) = 0,Var(ϵ) = σ2.

Theorem (Theorem 1 in Hastie et al. 2022)
Assume the above linear model, where x ∼ Px has a finite moment of order
4 + η for some η > 0 and Σ = Ip. Let r2 = ||β||22. Then, as n, p→∞ with
p/n→ γ ∈ (0,∞), it holds (a.s.) that

RX(β̂, β)→

{
σ2 γ

1−γ for γ < 1,

r2
(

1− 1
γ

)
+ σ2 1

γ−1 for γ > 1.

Let SNR = r2

σ2 and note that the risk of the null estimator β̃ = 0 is r2.

• When γ < 1, RX(β̂, β) < RX(β̃, β) ⇐⇒ γ < SNR
SNR+1 .

• When γ > 1, RX(β̂, β) > RX(β̃, β) if SNR ≤ 1.

Overparametrized Asymptotics (Isotropic Features)
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When γ > 1,SNR > 1, RX(β̂, β) has a local minimum at γ =
√

SNR√
SNR−1

and

tends to RX(β̃, β) from below as γ →∞. Recall that SNR = r2

σ2 =
||β||22
σ2

and

RX(β̂, β)→

{
σ2 γ

1−γ for γ < 1,

r2
(

1− 1
γ

)
+ σ2 1

γ−1 for γ > 1.
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(a) Risk RX(β̂, β) when σ2 = 1 and r2

ranges from 1 to 5.
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Let Σ =
∑p

i=1 sivivT
i and define two probability distributions on R≥0:

Ĥn(s) :=
1
p

p∑
i=1

1{s≥si} and Ĝn(s) =
1

||β||22

p∑
i=1

⟨β, vi⟩21{s≥si}.

Assumption 1: x ∼ Px with x = Σ1/2z and
1 z = (z1, ..., zp)

T has independent (not necessarily identically
distributed) entries with E(zi) = 0,E(z2

i ) = 1, and E|zi|k ≤ Ck <∞
for all k ≥ 2;

2 s1 = ||Σ||op ≤M and
∫ 1

s dĤn(s) < M for some large constant M > 0;

3
∣∣1− p

n

∣∣ ≥ 1
M and 1/M ≤ p/n ≤M.

Overparametrized Asymptotics (Correlated Features)
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Under Assumption 1, we further assume that sp = λmin(Σ) >
1
M . Then,

with γ = p/n, it holds with high probability that

RX(β̂, β) = BX(β̂, β) + VX(β̂, β),∣∣∣BX(β̂, β)− B(Ĥn, Ĝn, γ)
∣∣∣ ≤ C ||β||22

n1/7 ,∣∣∣VX(β̂, β)− V(Ĥn, γ)
∣∣∣ ≤ C

n1/7 ,

where

B(Ĥn, Ĝn, γ) := ||β||22

1 + γc0

∫ s2

(1+c0γs)2 dĤn(s)∫ s
(1+c0γs)2 dĤn(s)

∫
s

(1 + c0γs)2 dĜn(s),

V(Ĥn, γ) := σ2γ

∫ s2

(1+c0γs)2 dĤn(s)∫ s
(1+c0γs)2 dĤn(s)

and 1− 1
γ
=

∫
1

c0γs
dĤn(s).

Overparametrized Asymptotics (Correlated Features)
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Now, we consider the data model

((xi,wi), ϵi) ∼ Px,w × Pϵ, i = 1, ...,n

yi = xT
i β + wT

i θ + ϵi, i = 1, ...,n,

where

Cov((xi,wi)) = Σ =

(
Σx Σxw
Σxw Σw

)
.

The out-of-sample prediction risk is defined as:

RX(β̂;β, θ) = E
[(

xT
0 β̂ − E (y0|x0,w0)

)2
|X

]
= E

[(
xT

0 β̂ − E (y0|x0)
)2
|X

]
+ E

[
(E (y0|x0)− E (y0|x0,w0))

2 |X
]
.

Misspecified Linear Model
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Now, we consider the data model

((xi,wi), ϵi) ∼ Px,w × Pϵ, i = 1, ...,n

yi = xT
i β + wT

i θ + ϵi, i = 1, ...,n,

where

Cov((xi,wi)) = Σ =

(
Σx Σxw
Σxw Σw

)
.

If (xi,wi) is jointly normal, then

E (y0|x0,w0) = xT
0β + wT

0 θ

E (y0|x0) = xT
0
(
β +Σ−1

x Σxwθ
)

E
[
(E (y0|x0)− E (y0|x0,w0))

2 |X
]
= θTΣw|xθ,

where Σw|x = Σw − ΣxwΣ
−1
x Σxw and

Misspecified Linear Model (A Normal Example)
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Question: Is it possible to consider other linear interpolators?

Minimum ℓ1-norm least squares regression (Li and Wei, 2021):

β̂ℓ1 = argmin
{
||b||1 : b minimizes ||Y− Xb||22

}
.

• When γ < 1, β̂ℓ1 is still the usual least squares estimator.

• When γ > 1, β̂ℓ1 approaches the basis pursuit solution (Chen and
Donoho, 1994):

min
b∈Rp
||b||1

subject to Y = Xb.

Minimum ℓ1-Norm Regression
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Figure 5: Triple descent in sparse linear regression (Li and Wei, 2021), where
n = 100 is fixed, s/n = 0.3, and s/n · M2 = 10. Here, s is the sparsity level and M
is the magnitude of the non-zero entries.

Triple Descents in Sparse Linear Regression
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We fix n = 100 and generate random samples from

y = xTβ + ϵ with (x, ϵ) ∼ Px × Pϵ,

where Pϵ ∼ N(0, 1) and Px ∼ N(0,Σ) with

Σ−1 =


1 −0.4

−0.4 1
. . .

. . . . . . −0.4
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 .
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(b) Test Errors.

Comparisons Between Min ℓ1 and ℓ2-Norm Solutions
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1 Linear Regression: “Benign Overfitting in Linear Regression”
(Bartlett et al., 2020).

2 Ridge Regression: “The Optimal Ridge Penalty for Real-world
High-dimensional Data Can Be Zero or Negative due to the Implicit
Ridge Regularization” (Kobak et al., 2020).

3 “Multiple Descent”: Li and Meng (2021).
4 Mean-field theory: Mei et al. (2018); Mei and Montanari (2022).
5 ...

Further Readings
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Thank you!
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Recall that the ridge regression estimator β̂λ =
(
XTX + nλI

)−1 XTY. By
the Sherman–Morrison formula1, we have that

(XTX + nλI)−1XT =

[
1

nλ
I − 1

n2λ2 XT
(

I +
1

nλ
XXT

)−1

X

]
XT

=
1

nλ
XT − 1

n2λ2 XT
(

I +
1

nλ
XXT

)−1

XXT

=
1

nλ
XT − 1

n2λ2 XT
(

I +
1

nλ
XXT

)−1 ( 1
nλ

XXT + I − I
)

=
1

nλ
XT − 1

nλ
XT +

1
nλ

XT
(

I +
1

nλ
XXT

)−1

= XT (nλI + XXT)−1
.

1See https://en.wikipedia.org/wiki/Sherman-Morrison_formula.

Details of “Kernel Tricks” in (1)
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