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A" "8 A Central Tenet in Machine Learning

Assume that y; = f(x;) + ¢; with (x;,¢;) ~ Py x Pc fori=1,...,n.
Training Risk: 1 3% | L (h(x;),y;) for some loss function L.
Test Risk: Ey y)~p,, [L(7(x),y)].
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Figure 1: Classical bias-Variance trade-off (Belkin et al., 2019).
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A"Vl Contradictory Evidence in Deep Neural Networks
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Figure 2: Training and test errors of two-layer Neural Networks (NNs) with
different number of hidden units H (Neyshabur et al., 2014).
o Notes: The number of parameters is H(d + K) for each two-layer NNs, where d is the number of
features and K is the size of the output laver.
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A" YA Interpolating/Overparameterized Regime
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Figure 3: An extension of the classical bias-variance trade-off framework: the
“double descent” risk curve (Belkin et al., 2019).
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A" "l Overparametrized Linear Models

Data: {(yi,x;)}!_, with x; € R”,y; € R from the linear model

yi= szﬁ +¢€ with (x,-, Ei) i P, x P,

where E(x;) = 0,Cov(x;) = 3, and E(¢;) = 0, Var(e;) = o2.
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A" "l Overparametrized Linear Models

Data: {(yi,x;)}!_, with x; € R”,y; € R from the linear model
Yi = xlTﬁ +¢  with (x,-, 61‘) 1,1\51 P, x P,

where E(x;) = 0,Cov(x;) = 3, and E(¢;) = 0, Var(e;) = o2.
Isotropic features: ¥ = I,.

Latent space features: ¥ = WWT + I, with W € R4 d < p and 3 lies
in the span of the columns of W.

Nonlinear features: x; = o(Wz;) with W € RF*4, z; ~ N(0,1;), and ¢ is
a nonlinear activation function.
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A" "l Overparametrized Linear Models

Data: {(yi,x;)}!_, with x; € R”,y; € R from the linear model
Yi = xlTﬁ +¢  with (x,-, 61‘) 1,1\51 P, x P,

where E(x;) = 0,Cov(x;) = 3, and E(¢;) = 0, Var(e;) = o2.
Isotropic features: ¥ = I,.

Latent space features: ¥ = WWT + I, with W € R4 d < p and 3 lies
in the span of the columns of W.

Nonlinear features: x; = o(Wz;) with W € RF*4, z; ~ N(0,1;), and ¢ is
a nonlinear activation function.

Question: Why do we study overparametrization on simple linear
models?
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A" "l Connecting Linear Models to Neural Networks

“Lazy training” regime (Geiger et al., 2020): model parameter
6 = (a;, W;;i =1,...,N) stays close to the initialization 6 as § = 6y + A,

and we approximate the two-layer neural network model

witha; € R, w; € R?

f(z:0) =f(z;a, W) Za,

by

f(z:0) ~ f(z:60) + Vf(z; 60)" A
~ f(z;00) + Vaf (z; a0, Wo)  Aa + Vif(z; ap, Wo) AW

N N

= f(z;60) + Z Aa; - o (wh i) + Z ag,iz' Aw; - ¢ (wh z) .
i=1 i=1

Neural tangent kernel model

Random feature model
The approximation is still nonlinear in the input z but linear in the parameter 5 = A.
The above arguments can be made rigorous in Jacot et al. (2018); Du et al. (2019)

Allen-Zhu et al. (2019).
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w Minimum /,-Norm Least Squares Regression

Overparametrization ratio: v := £ € (0, 00).

Given the training data Y = (y1, ...,yn)T ceR'and X = | : | e R"P, we

T
n

solve for the usual least squares estimator 3 = (X7X)"'1XTY wheny < 1
(rigorously, X need to have full column rank).

X
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Given the training data Y = (y1, ...,yn)T ceR'and X = | : | e R"P, we

T

X

solve for the usual least squares estimator 3 = (X7X)"'1XTY wheny < 1
(rigorously, X need to have full column rank).

Question: What if v > 1 with an underdetermined system of linear
equations Y = X/3?
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w Minimum /,-Norm Least Squares Regression

Overparametrization ratio: v := £ € (0, 00).

Given the training data Y = (y1, ...,yn)T ceR'and X = | : | e R"P, we

T

X

solve for the usual least squares estimator 3 = (X7X)"'1XTY wheny < 1
(rigorously, X need to have full column rank).

Question: What if v > 1 with an underdetermined system of linear
equations Y = X/3?

Minimum /;-norm least squares regression:

B = argmin {||b|\2 : b minimizes ||Y — XbH%} .
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A" YA Solving Minimum /,-Norm Least Squares Regression

When v > 1, we can solve the minimum /;-norm least squares
regression 3 = argmin {Hb| |, : b minimizes ||Y — Xb| \%} by two different
methods:
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A" "8 Solving Minimum /,-Norm Least Squares Regression

When v > 1, we can solve the minimum /;-norm least squares
regression 3 = argmin {Hb| |, : b minimizes ||Y — Xb| \%} by two different
methods:

Gradient descent: 8+ « g®) 4 ¢XT (Y — Xp®) k=0,1,..,
where 3@ =0and t € (0, #(XTX)) with Apax (X X) being the
largest eigenvalue of XTX.
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A" "8 Solving Minimum /,-Norm Least Squares Regression

When v > 1, we can solve the minimum /;-norm least squares
regression 3 = argmin {Hb| |, : b minimizes ||Y — Xb| \%} by two different
methods:

Gradient descent: 8+ « g®) 4 ¢XT (Y — Xp®) k=0,1,..,
where 80 = 0and t € (0 W) with Apax (XTX) being the

largest eigenvalue of XTX.
Analytic solution (“Ridgeless”): Consider the ridge regression

By = arg min [ Y — Xsz + A |b||2] = (X"X+ 1/1)\1)71 xTy
beR?

D
O XT (XXT 4 nAI) Y,

and 3 = limy_,o+ B \, Where we use the “kernel tricks” in (*).
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A" "8 Out-of-Sample Prediction Risk

We evaluate the minimum /,-norm least squares regression through the
out-of-sample prediction risk with xy ~ Px as:

Rx (B:8) =E[ (x5~ F5) X]
o (K

- H]E(B\X) — 6‘ ‘22 + Trace [COV(B\X)Z} ;

Bx(B;8) Vx(B;B)

where ||x[|3 = xT%x.
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A" "8 Out-of-Sample Prediction Risk

We evaluate the minimum /,-norm least squares regression through the
out-of-sample prediction risk with xy ~ Px as:

Rx (B:8) =E[ (x5~ F5) X]
o (K

- H]E(B\X) — 6‘ ‘22 + Trace [COV(B\X)Z} ;

Bx(B;8) Vx(B;B)

where ||x[|3 = xT%x.

If we write the minimum ¢,-norm least squares estimator as
B = (XTX)*XTY with (XTX)* being the pseudoinverse of X' X, then

BX(E; B) = BTIXIIZ  and VX(B\; B8) = %ZTrace(fﬂ'E),

where S = % and I1 = I — $+5; see Lemma 1 in Hastie et al. (2022).
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W Underparametrized Asymptotics (y < 1)

Under the linear model setting,
Y= xIB+e with (x,e) ~P, x P,
where E(x) = 0, Cov(x) = ¥, and E(¢) = 0, Var(e) = o>.

If x has a finite 4-th moment and A i (X) > ¢ > 0 for some constant c,
thenasn,p — cowithp/n — v <1,

. oy 2 V.
ngnoloRX(Baﬂ)*a 1 77

see Proposition 2 in Hastie et al. (2022), where the proof leverages the
Marchenko-Pastur theorem (Mar¢enko and Pastur, 1967).

o Notes: In the underparameterized case (v < 1),
Bx(B,) = BTHXIIB = O because 1 =1 — £7'¥ = 0.
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A" Yl Overparametrized Asymptotics (Isotropic Features)

Recall the linear model setting:

y= xTB+e with (x,€) ~P, xP,,
where E(x) = 0,Cov(x) = ¥, and E(¢) = 0, Var(e) = 2.
Theorem (Theorem 1 in Hastie et al. 2022)

Assume the above linear model, where x ~ Py has a finite moment of order
4+ 1 for somen > 0and ¥ = 1I,,. Let r* = ||ﬂ\|§ Then, as n,p — oo with
p/n — v € (0, 00), it holds (a.s.) that

0?2 fory <1,

.
1—
P(1-1)+02L fory>1.

RX(B\’/B) - {
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A" Yl Overparametrized Asymptotics (Isotropic Features)

Recall the linear model setting:

y= xTB+e with (x,€) ~P, xP,,
where E(x) = 0,Cov(x) = ¥, and E(¢) = 0, Var(e) = 2.
Theorem (Theorem 1 in Hastie et al. 2022)

Assume the above linear model, where x ~ Py has a finite moment of order

4+ 1 for somen > 0and ¥ = 1I,,. Let r* = ||ﬂ\|§ Then, as n,p — oo with
p/n — v € (0, 00), it holds (a.s.) that

2_°q
Uﬁ fOT”Y<17

P(1-1)+02L fory>1.

RX(B\’/B) - {

Let SNR = ;—22 and note that the risk of the null estimator 5 = 0is 2.
When v < 1, Rx(5, 8) < Rx(B. 8) <= 7 < oy
When v > 1, Rx(3, 8) > Rx(B, B) if SNR < 1.
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w Overparametrized Asymptotics (Isotropic Features)

When v > 1,SNR > 1, Rx(B, 8) has a local minimum at y = —2NR_ and

v SNR—1
~ 5 2
tends to Rx(f3, 3) from below as 7 — oo. Recall that SNR = Z; = ”5#
and
forv < 1,
2 1
) +0°5 for v > 1.
10 10
8 8
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2 2
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pin-y
(a) Risk RX(E7 B) when o2 = 1 and r2 (b) Risk RX(E, B) when 12 = 5 and o2
ranges from 1 to 5. ranges from 1 to 5.
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W Overparametrized Asymptotics (Correlated Features)

Let X =" sv0! and define two probability distributions on Rxo:

. 1< .
Hn(S) = - Z ]].{525‘.} and Gn( T Z ,B,Ul ]]-{s>s}
p i=1 H5||2 i=1
Assumption 1: x ~ P, with x = ©1/2z and

z = (z1,...,2,)" has independent (not necessarily identically
distributed) entries with E(z;) = 0, E(z?) = 1, and E|z;|F < C; < oo
forall k > 2;

s1= |2, <Mand [ LdH,( s) < M for some large constant M > 0;
|1—%’2Mand1/MSP/HSM.
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w Overparametrized Asymptotics (Correlated Features)

Under Assumption 1, we further assume that s, = Ain(2) > ﬁ Then,
with v = p/n, it holds with high probability that
Rx(B, B) = Bx(B, 8) + Vx(B, B),

2
]BX(B,ﬁ) —B(ﬁmanm‘ _ Clislh

nl/7
~ - C
Vx(B.8) = V(Hy )| < .
where

. J raeedHn(s) s
B(Hy,, G, ) == 18112 |1 + ¢ wor) / dG,(s),

(Hy, G, ) I Hz [ Y OdeHn(s) (1+C0’ys)2 n(s)

N T2 dH,(s) -
V(H,,7) = o VM and1— ~ — /LdHn(s).
J s dHn(s) v o5
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A" Yl Misspecified Linear Model

Now, we consider the data model

((xhw,-),ei) ~ Px,w X PE,i = 1, N
Yi = xiTﬁ + w,-TG +e€,i=1,..,n,

where

Zx Exw
COV((X,‘,ZUi)) =X = (Exw Ew> .

The out-of-sample prediction risk is defined as:
~ s 2
Ru(:.6) = & | (555~ & (ol an)) x|

— 5 | (35 - B olw)) 1x] + B [(8 (o) ~ £ sl ) ? 1]
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A" "8 Misspecified Linear Model (A Normal Example)

Now, we consider the data model

((xi,wi),e,-) ~ Px7w X Pe,l. = 1, . n

Yi = xiTB+wiT9—|— e,i=1,...,n,
where

Cov((mw)) == (57 3
If (x;, w;) is jointly normal, then

E (yo|xo0, wo) = x3 3 + w6
E (y0|x0) = xg (5 + Ex_lzxwe)
E [(E (volxo) — E (yolx0, w0))* X| = 07416,

where ¥, = ¥y — Y2y 'y and
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w Minimum ¢;-Norm Regression

Question: Is it possible to consider other linear interpolators?
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w Minimum ¢;-Norm Regression

Question: Is it possible to consider other linear interpolators?
Minimum /;-norm least squares regression (Li and Wei, 2021):

Bgl = argmin{HbH1 : b minimizes ||Y — Xb||§} .

When v < 1, B& is still the usual least squares estimator.

When v > 1, Bgl approaches the basis pursuit solution (Chen and
Donoho, 1994):

min [[b]l;

subject to Y = Xb.
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W Triple Descents in Sparse Linear Regression

Risk behavior of minimum ¢;-norm interpolators (fixed s/n)

— fitted risk curve

log(Generalization error+1)

Descent 1 | | Descent 2

T T T T
107! 100 10t 10?
p/n

Figure 5: Triple descent in sparse linear regression (Li and Wei, 2021), where
n = 100 is fixed, s/n = 0.3, and s/n - M? = 10. Here, s is the sparsity level and M
is the magnitude of the non-zero entries.
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AV "8 Comparisons Between Min ¢; and /,-Norm Solutions

We fix n = 100 and generate random samples from
Y= xTB+e with (x,€) ~Py xP,,
where P, ~ N(0,1) and P, ~ N(0, ) with

— Min f1-norm —— Min £;-norm (Test)
Min £;-norm Min £2-norm (Test)
40 8000
z g
s 3
£ 30 G 6000
= o
3 13
H g
< z
£20 2 4000
£ 3
7 =
10 $ 2000 i
025 050 075 100 125 150 175 2.00 025 050 075 100 125 150 175 2.00
pin pin
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A" YA Further Readings

Linear Regression: “Benign Overfitting in Linear Regression”
(Bartlett et al., 2020).

Ridge Regression: “The Optimal Ridge Penalty for Real-world
High-dimensional Data Can Be Zero or Negative due to the Implicit
Ridge Regularization” (Kobak et al., 2020).

“Multiple Descent”: Li and Meng (2021).
Mean-field theory: Mei et al. (2018); Mei and Montanari (2022).
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Thank you!
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W Details of “Kernel Tricks” in (1)

Recall that the ridge regression estimator 3y = (X7X + nAI) “'XTY. By
the Sherman—Morrison formula!, we have that

-1
1
(XX +nAD)71XT = I 27)\2XT (1 + AXXT> x| xT
1 1 1 -
= X X <1+ MXXT) beo'd
1 1 1 |
= —X'— X' (1+ =xxT —XXT+1-1
ni n2\2 ( LY ) (n/\ +
1

= ix iXT + iXT I+ —XXT o
T n\ n\ n\
— X7 (n\L+ XXT) "'

1See https://en.wikipedia.org/wiki/Sherman-Morrison_ formula.
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