STAT 538 Final Presentation

Surprises in High-Dimensional Ridgeless Least Squares Interpolation

Paper Authors:
Trevor Hastie, Andrea Montanari,
Saharon Rosset, Ryan J. Tibshirani

Paper link:
https://doi.org/10.1214/21-AOS2133 (The Annals of Statistics, 2022)

March 6, 2023

Presented by Yikun Zhang

A Central Tenet in Machine Learning

Assume that $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ with $\left(x_{i}, \epsilon_{i}\right) \sim P_{x} \times P_{\epsilon}$ for $i=1, \ldots, n$.

- Training Risk: $\frac{1}{n} \sum_{i=1}^{n} L\left(h\left(x_{i}\right), y_{i}\right)$ for some loss function L.
- Test Risk: $\mathbb{E}_{(x, y) \sim P_{x y}}[L(h(x), y)]$.

Figure 1: Classical bias-Variance trade-off (Belkin et al., 2019).

Contradictory Evidence in Deep Neural Networks

Figure 2: Training and test errors of two-layer Neural Networks (NNs) with different number of hidden units H (Neyshabur et al., 2014).

- Notes: The number of parameters is $H(d+K)$ for each two-layer NNs, where d is the number of features and K is the size of the output layer.

Interpolating/Overparameterized Regime

Figure 3: An extension of the classical bias-variance trade-off framework: the "double descent" risk curve (Belkin et al., 2019).

Data: $\left\{\left(y_{i}, x_{i}\right)\right\}_{i=1}^{n}$ with $x_{i} \in \mathbb{R}^{p}, y_{i} \in \mathbb{R}$ from the linear model

$$
y_{i}=x_{i}^{T} \beta+\epsilon_{i} \quad \text { with } \quad\left(x_{i}, \epsilon_{i}\right) \stackrel{\text { i.i.d. }}{\sim} \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $\mathbb{E}\left(x_{i}\right)=0, \operatorname{Cov}\left(x_{i}\right)=\Sigma$, and $\mathbb{E}\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.

Data: $\left\{\left(y_{i}, x_{i}\right)\right\}_{i=1}^{n}$ with $x_{i} \in \mathbb{R}^{p}, y_{i} \in \mathbb{R}$ from the linear model

$$
y_{i}=x_{i}^{T} \beta+\epsilon_{i} \quad \text { with } \quad\left(x_{i}, \epsilon_{i}\right) \stackrel{\text { i.i.d. }}{\sim} \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $\mathbb{E}\left(x_{i}\right)=0, \operatorname{Cov}\left(x_{i}\right)=\Sigma$, and $\mathbb{E}\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.

- Isotropic features: $\Sigma=\boldsymbol{I}_{p}$.
- Latent space features: $\Sigma=W W^{T}+\boldsymbol{I}_{p}$ with $W \in \mathbb{R}^{p \times d}, d \ll p$ and β lies in the span of the columns of W.
- Nonlinear features: $x_{i}=\varphi\left(W z_{i}\right)$ with $W \in \mathbb{R}^{p \times d}, z_{i} \sim N\left(0, \boldsymbol{I}_{d}\right)$, and φ is a nonlinear activation function.

Data: $\left\{\left(y_{i}, x_{i}\right)\right\}_{i=1}^{n}$ with $x_{i} \in \mathbb{R}^{p}, y_{i} \in \mathbb{R}$ from the linear model

$$
y_{i}=x_{i}^{T} \beta+\epsilon_{i} \quad \text { with } \quad\left(x_{i}, \epsilon_{i}\right) \stackrel{\text { i.i.d. }}{\sim} \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $\mathbb{E}\left(x_{i}\right)=0, \operatorname{Cov}\left(x_{i}\right)=\Sigma$, and $\mathbb{E}\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.

- Isotropic features: $\Sigma=\boldsymbol{I}_{p}$.
- Latent space features: $\Sigma=W W^{T}+\boldsymbol{I}_{p}$ with $W \in \mathbb{R}^{p \times d}, d \ll p$ and β lies in the span of the columns of W.
- Nonlinear features: $x_{i}=\varphi\left(W z_{i}\right)$ with $W \in \mathbb{R}^{p \times d}, z_{i} \sim N\left(0, \boldsymbol{I}_{d}\right)$, and φ is a nonlinear activation function.

Question: Why do we study overparametrization on simple linear models?

Connecting Linear Models to Neural Networks

"Lazy training" regime (Geiger et al., 2020): model parameter $\theta=\left(a_{i}, W_{i} ; i=1, \ldots, N\right)$ stays close to the initialization θ_{0} as $\theta=\theta_{0}+\Delta$, and we approximate the two-layer neural network model

$$
f(z ; \theta) \equiv f(z ; \boldsymbol{a}, \boldsymbol{W})=\sum_{i=1}^{N} a_{i} \cdot \varphi\left(w_{i}^{T} z\right) \quad \text { with } a_{i} \in \mathbb{R}, w_{i} \in \mathbb{R}^{p}
$$

by

$$
\begin{aligned}
f(z ; \theta) & \approx f\left(z ; \theta_{0}\right)+\nabla f\left(z ; \theta_{0}\right)^{T} \Delta \\
& \approx f\left(z ; \theta_{0}\right)+\nabla_{\boldsymbol{a}} f\left(z ; \boldsymbol{a}_{0}, \boldsymbol{W}_{0}\right)^{T} \Delta \boldsymbol{a}+\nabla_{\boldsymbol{w}} f\left(z ; \boldsymbol{a}_{0}, \boldsymbol{W}_{0}\right)^{T} \Delta \boldsymbol{W} \\
& =f\left(z ; \theta_{0}\right)+\underbrace{\sum_{i=1}^{N} \Delta a_{i} \cdot \varphi\left(w_{0, i}^{T} x_{i}\right)}_{\text {Random feature model }}+\underbrace{\sum_{i=1}^{N} a_{0, i} z^{T} \Delta w_{i} \cdot \varphi^{\prime}\left(w_{0, i}^{T} z\right)}_{\text {Neural tangent kernel model }} .
\end{aligned}
$$

- The approximation is still nonlinear in the input z but linear in the parameter $\beta=\Delta$.
- The above arguments can be made rigorous in Jacot et al. (2018); Du et al. (2019); Allen-Zhu et al. (2019).

Minimum ℓ_{2}-Norm Least Squares Regression

Overparametrization ratio: $\gamma:=\frac{p}{n} \in(0, \infty)$.
Given the training data $Y=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$ and $X=\left(\begin{array}{c}x_{1}^{T} \\ \vdots \\ x_{n}^{T}\end{array}\right) \in \mathbb{R}^{n \times p}$, we solve for the usual least squares estimator $\widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y$ when $\gamma \leq 1$ (rigorously, X need to have full column rank).

Minimum ℓ_{2}-Norm Least Squares Regression

Overparametrization ratio: $\gamma:=\frac{p}{n} \in(0, \infty)$.
Given the training data $Y=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$ and $X=\left(\begin{array}{c}x_{1}^{T} \\ \vdots \\ x_{n}^{T}\end{array}\right) \in \mathbb{R}^{n \times p}$, we solve for the usual least squares estimator $\widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y$ when $\gamma \leq 1$ (rigorously, X need to have full column rank).

Question: What if $\gamma>1$ with an underdetermined system of linear equations $Y=X \beta$?

Minimum ℓ_{2}-Norm Least Squares Regression

Overparametrization ratio: $\gamma:=\frac{p}{n} \in(0, \infty)$.
Given the training data $Y=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$ and $X=\left(\begin{array}{c}x_{1}^{T} \\ \vdots \\ x_{n}^{T}\end{array}\right) \in \mathbb{R}^{n \times p}$, we solve for the usual least squares estimator $\widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y$ when $\gamma \leq 1$ (rigorously, X need to have full column rank).

Question: What if $\gamma>1$ with an underdetermined system of linear equations $Y=X \beta$?

Minimum ℓ_{2}-norm least squares regression:

$$
\widehat{\beta}=\arg \min \left\{\|b\|_{2}: b \text { minimizes }\|Y-X b\|_{2}^{2}\right\} .
$$

Solving Minimum ℓ_{2}-Norm Least Squares Regression

When $\gamma>1$, we can solve the minimum ℓ_{2}-norm least squares regression $\widehat{\beta}=\arg \min \left\{\|b\|_{2}: b\right.$ minimizes $\left.\|Y-X b\|_{2}^{2}\right\}$ by two different methods:

Solving Minimum ℓ_{2}-Norm Least Squares Regression

When $\gamma>1$, we can solve the minimum ℓ_{2}-norm least squares regression $\widehat{\beta}=\arg \min \left\{\|b\|_{2}: b\right.$ minimizes $\left.\|Y-X b\|_{2}^{2}\right\}$ by two different methods:
(1) Gradient descent: $\beta^{(k+1)} \leftarrow \beta^{(k)}+t X^{T}\left(Y-X \beta^{(k)}\right), k=0,1, \ldots$, where $\beta^{(0)}=0$ and $t \in\left(0, \frac{1}{\lambda_{\max }\left(X^{T} X\right)}\right)$ with $\lambda_{\max }\left(X^{T} X\right)$ being the largest eigenvalue of $X^{T} X$.

Solving Minimum ℓ_{2}-Norm Least Squares Regression

When $\gamma>1$, we can solve the minimum ℓ_{2}-norm least squares regression $\widehat{\beta}=\arg \min \left\{\|b\|_{2}: b\right.$ minimizes $\left.\|Y-X b\|_{2}^{2}\right\}$ by two different methods:
(1) Gradient descent: $\beta^{(k+1)} \leftarrow \beta^{(k)}+t X^{T}\left(Y-X \beta^{(k)}\right), k=0,1, \ldots$, where $\beta^{(0)}=0$ and $t \in\left(0, \frac{1}{\lambda_{\max }\left(X^{T} X\right)}\right)$ with $\lambda_{\max }\left(X^{T} X\right)$ being the largest eigenvalue of $X^{T} X$.
(2) Analytic solution ("Ridgeless"): Consider the ridge regression

$$
\begin{align*}
\widehat{\beta}_{\lambda}=\underset{b \in \mathbb{R}^{p}}{\arg \min }\left[\frac{1}{n}\|Y-X b\|_{2}^{2}+\lambda\|b\|_{2}^{2}\right] & =\left(X^{T} X+n \lambda I\right)^{-1} X^{T} Y \tag{1}\\
& \stackrel{(*)}{=} X^{T}\left(X X^{T}+n \lambda \boldsymbol{I}\right)^{-1} Y,
\end{align*}
$$

and $\widehat{\beta}=\lim _{\lambda \rightarrow 0^{+}} \widehat{\beta}_{\lambda}$, where we use the "kernel tricks" in $\left(^{*}\right)$.

Out-of-Sample Prediction Risk

We evaluate the minimum ℓ_{2}-norm least squares regression through the out-of-sample prediction risk with $x_{0} \sim P_{X}$ as:

$$
\begin{aligned}
R_{X}(\widehat{\beta} ; \beta) & =\mathbb{E}\left[\left(x_{0}^{T} \widehat{\beta}-x_{0}^{T} \beta\right) \mid X\right] \\
& =\mathbb{E}\left[\|\widehat{\beta}-\beta\|_{\Sigma}^{2} \mid X\right] \\
& =\underbrace{\|\mathbb{E}(\widehat{\beta} \mid X)-\beta\|_{\Sigma}^{2}}_{B_{X}(\widehat{\widehat{\beta}} ; \beta)}+\underbrace{\operatorname{Trace}[\operatorname{Cov}(\widehat{\beta} \mid X) \Sigma]}_{V_{X}(\widehat{\beta} ; \beta)},
\end{aligned}
$$

where $\|x\|_{\Sigma}^{2}=x^{T} \Sigma x$.

Out-of-Sample Prediction Risk

We evaluate the minimum ℓ_{2}-norm least squares regression through the out-of-sample prediction risk with $x_{0} \sim P_{X}$ as:

$$
\begin{aligned}
R_{X}(\widehat{\beta} ; \beta) & =\mathbb{E}\left[\left(x_{0}^{T} \widehat{\beta}-x_{0}^{T} \beta\right) \mid X\right] \\
& =\mathbb{E}\left[\|\widehat{\beta}-\beta\|_{\Sigma}^{2} \mid X\right] \\
& =\underbrace{\|\mathbb{E}(\widehat{\beta} \mid X)-\beta\|_{\Sigma}^{2}}_{B_{X}(\widehat{\beta} ; \beta)}+\underbrace{\operatorname{Trace}[\operatorname{Cov}(\widehat{\beta} \mid X) \Sigma]}_{V_{X}(\widehat{\beta} ; \beta)},
\end{aligned}
$$

where $\|x\|_{\Sigma}^{2}=x^{T} \Sigma x$.
If we write the minimum ℓ_{2}-norm least squares estimator as $\widehat{\beta}=\left(X^{T} X\right)^{+} X^{T} Y$ with $\left(X^{T} X\right)^{+}$being the pseudoinverse of $X^{T} X$, then

$$
B_{X}(\widehat{\beta} ; \beta)=\beta^{T} \Pi \Sigma \Pi \beta \quad \text { and } \quad V_{X}(\widehat{\beta} ; \beta)=\frac{\sigma^{2}}{n} \operatorname{Trace}\left(\widehat{\Sigma}^{+} \Sigma\right)
$$

where $\widehat{\Sigma}=\frac{X^{T} X}{n}$ and $\Pi=I-\widehat{\Sigma}^{+} \widehat{\Sigma}$; see Lemma 1 in Hastie et al. (2022).

Under the linear model setting,

$$
y=x^{T} \beta+\epsilon \quad \text { with } \quad(x, \epsilon) \sim \mathrm{P}_{x} \times \mathrm{P}_{\epsilon}
$$

where $\mathbb{E}(x)=0, \operatorname{Cov}(x)=\Sigma$, and $\mathbb{E}(\epsilon)=0, \operatorname{Var}(\epsilon)=\sigma^{2}$.
If x has a finite 4 -th moment and $\lambda_{\min }(\Sigma) \geq c>0$ for some constant c, then as $n, p \rightarrow \infty$ with $p / n \rightarrow \gamma<1$,

$$
\lim _{n \rightarrow \infty} R_{X}(\widehat{\beta}, \beta)=\sigma^{2} \frac{\gamma}{1-\gamma}
$$

see Proposition 2 in Hastie et al. (2022), where the proof leverages the Marchenko-Pastur theorem (Marčenko and Pastur, 1967).

- Notes: In the underparameterized case ($\gamma<1$), $B_{X}(\widehat{\beta}, \beta)=\beta^{T} \Pi \Sigma \Pi \beta=0$ because $\Pi=\boldsymbol{I}-\widehat{\Sigma}^{-1} \widehat{\Sigma}=0$.

Overparametrized Asymptotics (Isotropic Features)

Recall the linear model setting:

$$
y=x^{T} \beta+\epsilon \quad \text { with } \quad(x, \epsilon) \sim \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $\mathbb{E}(x)=0, \operatorname{Cov}(x)=\Sigma$, and $\mathbb{E}(\epsilon)=0, \operatorname{Var}(\epsilon)=\sigma^{2}$.

Theorem (Theorem 1 in Hastie et al. 2022)

Assume the above linear model, where $x \sim P_{x}$ has a finite moment of order $4+\eta$ for some $\eta>0$ and $\Sigma=\boldsymbol{I}_{p}$. Let $r^{2}=\|\beta\|_{2}^{2}$. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow \gamma \in(0, \infty)$, it holds (a.s.) that

$$
R_{X}(\widehat{\beta}, \beta) \rightarrow \begin{cases}\sigma^{2} \frac{\gamma}{1-\gamma} & \text { for } \gamma<1 \\ r^{2}\left(1-\frac{1}{\gamma}\right)+\sigma^{2} \frac{1}{\gamma-1} & \text { for } \gamma>1\end{cases}
$$

Overparametrized Asymptotics (Isotropic Features)

Recall the linear model setting:

$$
y=x^{T} \beta+\epsilon \quad \text { with } \quad(x, \epsilon) \sim \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $\mathbb{E}(x)=0, \operatorname{Cov}(x)=\Sigma$, and $\mathbb{E}(\epsilon)=0, \operatorname{Var}(\epsilon)=\sigma^{2}$.

Theorem (Theorem 1 in Hastie et al. 2022)

Assume the above linear model, where $x \sim P_{x}$ has a finite moment of order $4+\eta$ for some $\eta>0$ and $\Sigma=\boldsymbol{I}_{p}$. Let $r^{2}=\|\beta\|_{2}^{2}$. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow \gamma \in(0, \infty)$, it holds (a.s.) that

$$
R_{X}(\widehat{\beta}, \beta) \rightarrow \begin{cases}\sigma^{2} \frac{\gamma}{1-\gamma} & \text { for } \gamma<1 \\ r^{2}\left(1-\frac{1}{\gamma}\right)+\sigma^{2} \frac{1}{\gamma-1} & \text { for } \gamma>1\end{cases}
$$

Let $S N R=\frac{r^{2}}{\sigma^{2}}$ and note that the risk of the null estimator $\widetilde{\beta}=0$ is r^{2}.

- When $\gamma<1, R_{X}(\widehat{\beta}, \beta)<R_{X}(\widetilde{\beta}, \beta) \Longleftrightarrow \gamma<\frac{S N R}{S N R+1}$.
- When $\gamma>1, R_{X}(\widehat{\beta}, \beta)>R_{X}(\widetilde{\beta}, \beta)$ if $S N R \leq 1$.

Overparametrized Asymptotics (Isotropic Features)

When $\gamma>1$, SNR $>1, R_{X}(\widehat{\beta}, \beta)$ has a local minimum at $\gamma=\frac{\sqrt{S N R}}{\sqrt{S N R}-1}$ and tends to $R_{X}(\widetilde{\beta}, \beta)$ from below as $\gamma \rightarrow \infty$. Recall that $S N R=\frac{r^{2}}{\sigma^{2}}=\frac{\|\beta\|^{2}}{\sigma^{2}}$ and

$$
R_{X}(\widehat{\beta}, \beta) \rightarrow \begin{cases}\sigma^{2} \frac{\gamma}{1-\gamma} & \text { for } \gamma<1 \\ r^{2}\left(1-\frac{1}{\gamma}\right)+\sigma^{2} \frac{1}{\gamma-1} & \text { for } \gamma>1\end{cases}
$$

(a) Risk $R_{X}(\widehat{\beta}, \beta)$ when $\sigma^{2}=1$ and r^{2} ranges from 1 to 5 .

(b) Risk $R_{X}(\widehat{\beta}, \beta)$ when $r^{2}=5$ and σ^{2} ranges from 1 to 5 .

Let $\Sigma=\sum_{i=1}^{p} s_{i} v_{i} v_{i}^{T}$ and define two probability distributions on $\mathbb{R}_{\geq 0}$:

$$
\widehat{H}_{n}(s):=\frac{1}{p} \sum_{i=1}^{p} \mathbb{1}_{\left\{s \geq s_{i}\right\}} \quad \text { and } \quad \widehat{G}_{n}(s)=\frac{1}{\|\beta\|_{2}^{2}} \sum_{i=1}^{p}\left\langle\beta, v_{i}\right\rangle^{2} \mathbb{1}_{\left\{s \geq s_{i}\right\}} .
$$

Assumption 1: $x \sim P_{x}$ with $x=\Sigma^{1 / 2} z$ and
(1) $z=\left(z_{1}, \ldots, z_{p}\right)^{T}$ has independent (not necessarily identically distributed) entries with $\mathbb{E}\left(z_{i}\right)=0, \mathbb{E}\left(z_{i}^{2}\right)=1$, and $\mathbb{E}\left|z_{i}\right|^{k} \leq C_{k}<\infty$ for all $k \geq 2$;
(2) $s_{1}=\|\Sigma\|_{o p} \leq M$ and $\int \frac{1}{s} d \widehat{H}_{n}(s)<M$ for some large constant $M>0$;
(3) $\left|1-\frac{p}{n}\right| \geq \frac{1}{M}$ and $1 / M \leq p / n \leq M$.

Overparametrized Asymptotics (Correlated Features)

Under Assumption 1, we further assume that $s_{p}=\lambda_{\min }(\Sigma)>\frac{1}{M}$. Then, with $\gamma=p / n$, it holds with high probability that

$$
\begin{aligned}
& R_{X}(\widehat{\beta}, \beta)=B_{X}(\widehat{\beta}, \beta)+V_{X}(\widehat{\beta}, \beta) \\
& \left|B_{X}(\widehat{\beta}, \beta)-\mathcal{B}\left(\widehat{H}_{n}, \widehat{G}_{n}, \gamma\right)\right| \leq \frac{C\|\beta\|_{2}^{2}}{n^{1 / 7}}, \\
& \left|V_{X}(\widehat{\beta}, \beta)-\mathcal{V}\left(\widehat{H}_{n}, \gamma\right)\right| \leq \frac{C}{n^{1 / 7}},
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{B}\left(\widehat{H}_{n}, \widehat{G}_{n}, \gamma\right) & :=\|\beta\|_{2}^{2}\left[1+\gamma c_{0} \frac{\int \frac{s^{2}}{\left(1+c_{0} \gamma s\right)^{2}} d \widehat{H}_{n}(s)}{\int \frac{s}{\left(1+c_{0} \gamma s\right)^{2}} d \widehat{H}_{n}(s)}\right] \int \frac{s}{\left(1+c_{0} \gamma s\right)^{2}} d \widehat{G}_{n}(s), \\
\mathcal{V}\left(\widehat{H}_{n}, \gamma\right) & :=\sigma^{2} \gamma \frac{\int \frac{s^{2}}{\left(1+c_{0} \gamma s\right)^{2}} d \widehat{H}_{n}(s)}{\int \frac{s}{\left(1+c_{0} \gamma s\right)^{2}} d \widehat{H}_{n}(s)} \text { and } 1-\frac{1}{\gamma}=\int \frac{1}{c_{0} \gamma s} d \widehat{H}_{n}(s) .
\end{aligned}
$$

Misspecified Linear Model

Now, we consider the data model

$$
\begin{aligned}
& \left(\left(x_{i}, w_{i}\right), \epsilon_{i}\right) \sim P_{x, w} \times P_{\epsilon}, i=1, \ldots, n \\
& y_{i}=x_{i}^{T} \beta+w_{i}^{T} \theta+\epsilon_{i}, i=1, \ldots, n
\end{aligned}
$$

where

$$
\operatorname{Cov}\left(\left(x_{i}, w_{i}\right)\right)=\Sigma=\left(\begin{array}{cc}
\Sigma_{x} & \Sigma_{x w} \\
\Sigma_{x w} & \Sigma_{w}
\end{array}\right) .
$$

The out-of-sample prediction risk is defined as:

$$
\begin{aligned}
R_{X}(\widehat{\beta} ; \beta, \theta) & =\mathbb{E}\left[\left(x_{0}^{T} \widehat{\beta}-\mathbb{E}\left(y_{0} \mid x_{0}, w_{0}\right)\right)^{2} \mid X\right] \\
& =\mathbb{E}\left[\left(x_{0}^{T} \widehat{\beta}-\mathbb{E}\left(y_{0} \mid x_{0}\right)\right)^{2} \mid X\right]+\mathbb{E}\left[\left(\mathbb{E}\left(y_{0} \mid x_{0}\right)-\mathbb{E}\left(y_{0} \mid x_{0}, w_{0}\right)\right)^{2} \mid X\right] .
\end{aligned}
$$

Now, we consider the data model

$$
\begin{aligned}
& \left(\left(x_{i}, w_{i}\right), \epsilon_{i}\right) \sim P_{x, w} \times P_{\epsilon}, i=1, \ldots, n \\
& y_{i}=x_{i}^{T} \beta+w_{i}^{T} \theta+\epsilon_{i}, i=1, \ldots, n,
\end{aligned}
$$

where

$$
\operatorname{Cov}\left(\left(x_{i}, w_{i}\right)\right)=\Sigma=\left(\begin{array}{cc}
\Sigma_{x} & \Sigma_{x w} \\
\Sigma_{x w} & \Sigma_{w}
\end{array}\right) .
$$

If $\left(x_{i}, w_{i}\right)$ is jointly normal, then

$$
\begin{aligned}
\mathbb{E}\left(y_{0} \mid x_{0}, w_{0}\right) & =x_{0}^{T} \beta+w_{0}^{T} \theta \\
\mathbb{E}\left(y_{0} \mid x_{0}\right) & =x_{0}^{T}\left(\beta+\Sigma_{x}^{-1} \Sigma_{x w} \theta\right) \\
\mathbb{E}\left[\left(\mathbb{E}\left(y_{0} \mid x_{0}\right)-\mathbb{E}\left(y_{0} \mid x_{0}, w_{0}\right)\right)^{2} \mid X\right] & =\theta^{T} \Sigma_{w \mid x} \theta,
\end{aligned}
$$

where $\Sigma_{w \mid x}=\Sigma_{w}-\Sigma_{x w} \Sigma_{x}^{-1} \Sigma_{x w}$ and

Minimum ℓ_{1}-Norm Regression

Question: Is it possible to consider other linear interpolators?

Minimum ℓ_{1}-Norm Regression

Question: Is it possible to consider other linear interpolators?
Minimum ℓ_{1}-norm least squares regression (Li and Wei, 2021):

$$
\widehat{\beta}_{\ell_{1}}=\arg \min \left\{\|b\|_{1}: b \text { minimizes }\|Y-X b\|_{2}^{2}\right\} .
$$

- When $\gamma<1, \widehat{\beta}_{\ell_{1}}$ is still the usual least squares estimator.
- When $\gamma>1, \widehat{\beta}_{\ell_{1}}$ approaches the basis pursuit solution (Chen and Donoho, 1994):

$$
\begin{aligned}
& \min _{b \in \mathbb{R}^{p}}\|b\|_{1} \\
& \text { subject to } Y=X b .
\end{aligned}
$$

Triple Descents in Sparse Linear Regression

Figure 5: Triple descent in sparse linear regression (Li and Wei, 2021), where $n=100$ is fixed, $s / n=0.3$, and $s / n \cdot M^{2}=10$. Here, s is the sparsity level and M is the magnitude of the non-zero entries.

Comparisons Between Min ℓ_{1} and ℓ_{2}-Norm Solutions

We fix $n=100$ and generate random samples from

$$
y=x^{T} \beta+\epsilon \quad \text { with } \quad(x, \epsilon) \sim \mathrm{P}_{x} \times \mathrm{P}_{\epsilon},
$$

where $P_{\epsilon} \sim N(0,1)$ and $P_{x} \sim N(0, \Sigma)$ with

$$
\Sigma^{-1}=\left(\begin{array}{cccc}
1 & -0.4 & & \\
-0.4 & 1 & \ddots & \\
& \ddots & \ddots & -0.4 \\
& & -0.4 & 1
\end{array}\right)
$$

Further Readings

(1) Linear Regression: "Benign Overfitting in Linear Regression" (Bartlett et al., 2020).
(2) Ridge Regression: "The Optimal Ridge Penalty for Real-world High-dimensional Data Can Be Zero or Negative due to the Implicit Ridge Regularization" (Kobak et al., 2020).
(3) "Multiple Descent": Li and Meng (2021).
(1) Mean-field theory: Mei et al. (2018); Mei and Montanari (2022).

Thank you!

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning, pages 242-252. PMLR, 2019.
P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression. Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020.
M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849-15854, 2019.
S. Chen and D. Donoho. Basis pursuit. In Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 41-44. IEEE, 1994.
S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural networks. In International conference on machine learning, pages 1675-1685. PMLR, 2019.
M. Geiger, S. Spigler, A. Jacot, and M. Wyart. Disentangling feature and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020(11):113301, 2020.
T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2):949-986, 2022.
A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. Advances in neural information processing systems, 31, 2018.
D. Kobak, J. Lomond, and B. Sanchez. The optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization. The Journal of Machine Learning Research, 21(1):6863-6878, 2020.
X. Li and X.-L. Meng. A multi-resolution theory for approximating infinite-p-zero-n: Transitional inference, individualized predictions, and a world without bias-variance tradeoff. Journal of the American Statistical Association, 116(533):353-367, 2021.
Y. Li and Y. Wei. Minimum ℓ_{1}-norm interpolators: Precise asymptotics and multiple descent. arXiv preprint arXiv:2110.09502, 2021.
V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967.
S. Mei and A. Montanari. The generalization error of random features regression: Precise asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75(4):667-766, 2022.
S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665-E7671, 2018.
B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Details of "Kernel Tricks" in (1)

Recall that the ridge regression estimator $\widehat{\beta}_{\lambda}=\left(X^{T} X+n \lambda I\right)^{-1} X^{T} Y$. By the Sherman-Morrison formula ${ }^{1}$, we have that

$$
\begin{aligned}
\left(X^{T} X+n \lambda \boldsymbol{I}\right)^{-1} X^{T} & =\left[\frac{1}{n \lambda} \boldsymbol{I}-\frac{1}{n^{2} \lambda^{2}} X^{T}\left(\boldsymbol{I}+\frac{1}{n \lambda} X X^{T}\right)^{-1} X\right] X^{T} \\
& =\frac{1}{n \lambda} X^{T}-\frac{1}{n^{2} \lambda^{2}} X^{T}\left(\boldsymbol{I}+\frac{1}{n \lambda} X X^{T}\right)^{-1} X X^{T} \\
& =\frac{1}{n \lambda} X^{T}-\frac{1}{n^{2} \lambda^{2}} X^{T}\left(\boldsymbol{I}+\frac{1}{n \lambda} X X^{T}\right)^{-1}\left(\frac{1}{n \lambda} X X^{T}+\boldsymbol{I}-\boldsymbol{I}\right) \\
& =\frac{1}{n \lambda} X^{T}-\frac{1}{n \lambda} X^{T}+\frac{1}{n \lambda} X^{T}\left(\boldsymbol{I}+\frac{1}{n \lambda} X X^{T}\right)^{-1} \\
& =X^{T}\left(n \lambda \boldsymbol{I}+X X^{T}\right)^{-1} .
\end{aligned}
$$

