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In some real-world applications, observations are inherently directional
(or L2 normalized) in nature. Data of this type arise in:

• Astronomy: celestial coordinates of galaxies or stars.
• Geology: locations of craters, lakes, and other geological features

on Earth or other planets, epicenters of earthquakes (Seismology).
• Biology: yeast gene expression analysis, animal navigation.
• Text mining: cosine similarities between text documents.

Mathematically, a directional dataset consists of observations

X1, ...,Xn
i.i.d.∼ f ,

where f is a directional density supported on the unit hypersphere

Ωq :=
{

x ∈ Rq+1 : ||x||2 = 1
}

with
∫

Ωq
f (x)ωq(dx) = 1 and ||·||2 is the L2-norm in Rq+1.

∗ Notes: ωq is the Lebesgue measure on Ωq.

Background: What Are Directional Data?
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In astronomical surveys, the positions of observed objects are recorded
as {(α1, δ1, z1), ..., (αn, δn, zn)} ⊂ Ω2 × R+, where, for i = 1, ...,n,

• αi ∈ [0, 360◦) is the right ascension (RA), i.e., celestial longitude,
• δi ∈ [−90◦, 90◦] is the declination (DEC), i.e., celestial latitude.
• zi ∈ (0,∞) is the redshift value.

Figure 1: Illustration of RA and DEC (Image Courtesy of Wikipedia).

Background: Directional Data in Astronomy
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Cosmic Web is a large-scale network structure revealing that the matter in
our Universe is not uniformly distributed (Bond et al., 1996).

• Large scale: 1 Mpc ≈ 3.26 light-years.
• Cause: the anisotropic collapse of matter in gravitational instability

scenarios at the early stage of the Universe (Zel’Dovich, 1970).

Figure 2: Visualization of Cosmic Web (credited to the millennium simulation
project (Springel et al., 2005)).

Background: What Is Cosmic Web?
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Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),
• Interconnected filaments,
•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure 3: Characteristics of Cosmic Web (credited to the millennium simulation).

Background: Characteristics of Cosmic Web

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 7/56



Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),

• Interconnected filaments,
•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure 3: Characteristics of Cosmic Web (credited to the millennium simulation).

Background: Characteristics of Cosmic Web

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 7/56



Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),
• Interconnected filaments,

•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure 3: Characteristics of Cosmic Web (credited to the millennium simulation).

Background: Characteristics of Cosmic Web

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 7/56



Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),
• Interconnected filaments,
•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure 3: Characteristics of Cosmic Web (credited to the millennium simulation).

Background: Characteristics of Cosmic Web

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 7/56



Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),
• Interconnected filaments,
•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure 3: Characteristics of Cosmic Web (credited to the millennium simulation).

Background: Characteristics of Cosmic Web

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 7/56



Objective: Detect the cosmic web structure based on the distribution of
observed galaxies.

1 First on the 2D celestial sphere Ω2.
2 Then generalize to the 3D (redshift) space.

Figure 4: Distribution of galaxies on Ω2 within a thin redshift slice.
I In particular, we focus on identifying the cosmic filaments.

Motivation: Cosmic Web Detection
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• They connect complexes of super-clusters (Lynden-Bell et al., 1988).

• They contain information about the global cosmology and the
nature of dark matter (Zhang et al., 2009; Tempel et al., 2014).

• The trajectory of cosmic microwave background light can be
distorted due to cosmic filaments, creating the weak lensing effect.

Figure 5: Illustration of the bending trajectory of CMB lights (credit to Siyu He,
Shadab Alam, Wei Chen, and Planck/ESA; see He et al. (2018) for details).

Motivation: Significance of Cosmic Filaments
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• The filamentary structures are overwhelmingly complex (Cautun
et al., 2013, 2014):

• Lack of structural symmetries,
• Uncertainty in measuring its connectivity,
• Intrinsic multi-scale nature, etc.

Figure 6: A view of the present-day cosmic web 300 million light-years across, as
modeled by IllustrisTNG (Vogelsberger et al., 2014).

• There exist no universal and mathematically rigorous definitions
about cosmic filaments!

Challenges in Detecting Cosmic Filaments
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1 A brief review about existing research on cosmic filament detection.

2 Introduction to our cosmic filament model.
• Formulate cosmic filaments as the directional density ridges on Ω2.

3 Discussion on directional density ridges from both statistical and
computational perspectives.
• Prove the statistical consistency in estimating the true density ridges

with directional kernel density estimator (KDE).

• Estimate the directional density ridges via our Directional Subspace
Constrained Mean Shift (DirSCMS) algorithm.

• Establish the linear convergence properties of our DirSCMS algorithm.

4 Application on Sloan Digital Sky Survey (SDSS-IV; Ahumada et al.
2020) galactic data to construct a cosmic web catalog.

Highlights of the Today’s Talk
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Previous Works on Filament Detection
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Recall that the observed galaxies in any astronomical survey have their
coordinates as {(αi, δi, zi)}n

i=1 ⊂ Ω2 × R+.

The existing methods for detecting cosmic filaments from survey data
can be classified into the following two categories:

• 3D method: Convert redshifts into (comoving) distances (Tempel
et al., 2014; Sousbie et al., 2011; Pfeifer et al., 2022).

• 2D method: Slice the Universe into thin redshift slices (Chen et al.,
2015b; Duque et al., 2022).

I Our method can easily switch between the above two categories.

Categorization of Cosmic Filament Finders
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One convert {(αi, δi, zi)}n
i=1 to their Cartesian coordinates as

Xi = d(zi) cosαi cos δi,

Yi = d(zi) sinαi cos δi,

Zi = d(zi) sin δi,

where d(·) is a distance transforming function; see Tempel et al. (2014)
for details.

Figure 7: Matter distribution in a cubic section of the Universe (credit to NASA,
ESA, and E. Hallman at University of Colorado, Boulder)

3D Method for Detecting Filaments
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There are some potential drawbacks of detecting filaments with survey
data in the 3D space:

• The determination of d(·) relies on complex cosmological models.
• The galaxy distribution is distorted along the line of sight due to the

peculiar velocities of galaxies (i.e., the so-called finger-of-god
(Sargent and Turner, 1977) and Kaiser (Kaiser, 1987) effects).

Figure 8: Redshift distortions along the line of sight (Kuchner et al., 2021).

• The number of galaxies varies across different redshift values, so
applying 3D approaches will be computationally intensive.

Drawback of 3D Methods
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We partition the redshift range of observed galaxies into several
non-overlapping thin slices.

Figure 9: Illustration of slicing the Universe (credit to Laigle et al. 2018)

This tomographic approach has its own advantages over 3D methods:
• It controls the redshift distortions along the line-of-sight direction.
• The measurement error in one slice won’t propagate to other slices.
• It helps reduce computational cost...

2D Method for Detecting filaments
Slicing the Universe (Tomographic Analysis)

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 16/56



We partition the redshift range of observed galaxies into several
non-overlapping thin slices.

Figure 9: Illustration of slicing the Universe (credit to Laigle et al. 2018)

This tomographic approach has its own advantages over 3D methods:
• It controls the redshift distortions along the line-of-sight direction.
• The measurement error in one slice won’t propagate to other slices.
• It helps reduce computational cost...

2D Method for Detecting filaments
Slicing the Universe (Tomographic Analysis)

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 16/56



1 We slice the Universe via a cosmological model, such as Planck15
(Ade et al., 2016) or WMAP9 (Hinshaw et al., 2013) ΛCDM
cosmology, but not in the original redshift space.
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(b) By comoving distance ∆L = 20 Mpc.

Caveats in Slicing the Universe (I)
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2 The resulting (redshift) slices are not flat 2D planes, but some
spherical shell, which have a nonlinear curvature!
• Recall that the locations of galaxies in a slice are recorded by
{(αi, δi)}n

i=1 ⊂ Ω2 on a celestial sphere.

(a) Planned eBOSS coverage of the
Universe (credit to M. Blanton and SDSS)

(b) BOSS/eBOSS Spectroscopic Footprint
as of DR16 (credit to SDSS)

Problem: How do we model and estimate the cosmic filaments based on
the observed galaxies in each (redshift) slice?

Caveats in Slicing the Universe (II)
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Cosmic Filament Model: Directional
Density Ridges
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Definition (Tangent space of Ωq)

The tangent space of the sphere Ωq at x ∈ Ωq is given by

Tx ≡ Tx(Ωq) =
{

u− x ∈ Rq+1 : xT(u− x) = 0
}
'
{

v ∈ Rq+1 : xTv = 0
}
,

where V1 ' V2 signifies that the two vector spaces are isomorphic. In what
follows, v ∈ Tx indicates that v is a vector tangent to Ωq at x.

Definition (Exponential Map)

An exponential map at x ∈ Ωq is a mapping Expx : Tx → Ωq such that the vector
v ∈ Tx is mapped to point y := Expx(v) ∈ Ωq with γ(0) = x, γ(1) = y and
γ′(0) = v, where γ : [0, 1]→ Ωq is a geodesic.

Background Knowledge in Differential Geometry
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Given a smooth function f : Ωq → R, we extend its domain from Ωq to
Rq+1 \ {0} as:

f (x) ≡ f
(

x
||x||2

)
for all x ∈ Rq+1 \ {0} .

Given a smooth curve γ : (−ε, ε)→ Ωq with γ(0) = x and γ′(0) = v ∈ Tx,
the differential of f at point x ∈ Ωq is a linear map dfx : Tx → Tf (x)(R) ' R
given by

dfx(v) =
d
dt

f (γ(t))
∣∣∣
t=0

= (f ◦ γ)′(0). (1)

Definition (Riemannian Gradient)
The Riemannian gradient grad f (x) ∈ Tx ⊂ Rq+1 is defined by

〈grad f (x),v〉x = dfx(v) (2)

for any v ∈ Tx and the predefined Riemannian metric 〈·, ·, 〉x.

Riemannian Gradient on Ωq
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the differential of f at point x ∈ Ωq is a linear map dfx : Tx → Tf (x)(R) ' R
given by

dfx(v) =
d
dt

f (γ(t))
∣∣∣
t=0

= (f ◦ γ)′(0). (1)

Definition (Riemannian Gradient)
The Riemannian gradient grad f (x) ∈ Tx ⊂ Rq+1 is defined by

〈grad f (x),v〉x = dfx(v) (2)

for any v ∈ Tx and the predefined Riemannian metric 〈·, ·, 〉x.
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Given that Ωq is a submanifold in Rq+1, we relate the Riemannian
gradient grad f (x) on Ωq with the total gradient∇f (x) in Rq+1 as:

grad f (x) =
(
Iq+1 − xxT)∇f (x), (3)

which is the projection of∇f (x) onto the tangent space Tx at x ∈ Ωq

(Absil et al., 2009). Here, Iq+1 is the identity matrix in R(q+1)×(q+1).

Tx

x

∇f(x)Rad (∇f(x))

Tang (∇f(x)) ≡ gradf(x)
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Definition (Riemannian Hessian)
The Riemannian Hessian of f at x ∈ Ωq is a linear mapping
Hf (x) : Tx → Tx defined by

Hf (x)[v] = ∇̄vgrad f (x) (4)

for any v ∈ Tx, where ∇̄v is the Riemannian connection on Ωq.

1 It is self-adjoint with respect to the Riemannian metric as:

〈Hf (x)[v],u〉x = 〈v,Hf (x)[u]〉x.

2 It is related to the total gradient∇f (x) and total Hessian ∇∇f (x) as
(Zhang and Chen, 2021c):

Hf (x) = (Iq+1 − xxT)
[
∇∇f (x)−∇f (x)Tx · Iq+1

]
(Iq+1 − xxT).

3 Taylor’s expansion (Pennec, 2006):
(f ◦ Expx)(v) = f (x) + 〈grad f (x),v〉x +

1
2
〈Hf (x)[v],v〉x + O

(
||v||3

)
.
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We perform the spectral decomposition (Horn and Johnson, 2012) on the
Riemannian HessianHf (x) as:

Hf (x) = V(x)


0

λ1(x)
. . .

λq(x)

V(x)T,

where V(x) =
(
x,v1(x), ...,vq(x)

)
∈ R(q+1)×(q+1) has its columns as the

unit eigenvectors ofHf (x). Here,
• Eigenvectors v1(x), ...,vq(x) lie within the tangent space Tx.
• Descending eigenvalues: λ1(x) ≥ · · · ≥ λq(x).
• It has an eigenvector x that is normal to Tx and with eigenvalue 0.

Local Modes/Maxima of f on Ωq:

M≡Mode(f ) =
{

x ∈ Ωq : grad f (x) = 0, λ1(x) < 0
}
.

Characterization of High-Density Regions
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The set of local modesM signifies the zero-dimensional high-density
regions of f .
• When f is the underlying galaxy density function,M points to

some good candidates of galaxy clusters.
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We formulate the cosmic filaments as directional density ridges of the
underlying galaxy density function f on Ω2.

Figure 12: Density ridge (lifted onto the density function f ) (credit to Yen-Chi
Chen)

Directional Density Ridges (I)

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 26/56



The order-d density ridge on Ωq (or directional density ridge) of f is
defined as:

Rd ≡ Ridge(f ) =
{

x ∈ Ωq : Vd(x)Vd(x)Tgrad f (x) = 0, λd+1(x) < 0
}
,

where Vd(x) =
[
vd+1(x), ...,vq(x)

]
∈ R(q+1)×(q−d) consists of the last q− d

eigenvectors ofHf (x) within Tx.

Figure 13: Density ridge (lifted onto the density function f ; Chen et al. 2015a)
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Statistical and Algorithmic Estimation
of Directional Density Ridges
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How do we estimate the directional density ridgeRd and the set of local
modeM on Ωq from directional data {X1, ...,Xn} ⊂ Ωq?

We first estimate the density function f on Ωq via the directional KDE
(Hall et al., 1987; Bai et al., 1988; García-Portugués, 2013) as:

f̂h(x) =
CL,q(h)

n

n∑
i=1

L
(

1− xTXi

h2

)
,

• L : [0,∞)→ [0,∞) is a directional kernel, i.e., a rapidly decaying
nonnegative function. (Example: von Mises kernel L(r) = e−r.)

• h > 0 is the bandwidth parameter, and CL,q(h) is a normalizing term.

(a) fvMF,2(x;µ, ν) with µ = (0, 0, 1) and
ν = 4.0.

(b) 2
5 · fvMF,2(x;µ1, 5) + 3

5 · fvMF,2(x;µ2, 5)
with µ1 = (0, 0, 1),µ2 = (1, 0, 0).
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The directional KDE f̂h is useful because its plug-in estimators

M̂ =
{

x ∈ Ωq : grad f̂h(x) = 0, λ̂1(x) < 0
}

and
R̂d =

{
x ∈ Ωq : V̂d(x)V̂d(x)Tgrad f̂h(x) = 0, λ̂d+1(x) < 0

}

approachM andRd in a statistically consistent way (Theorem 6 in
Zhang and Chen 2021c and Theorem 4.1 in Zhang and Chen 2022):

• Haus
(
M,M̂

)
= O(h2) + OP

(√
1

nhq+2

)
, as h→ 0 and nhq+2 →∞,

• Haus
(
Rd, R̂d

)
= O(h2) + OP

(√
| log h|
nhq+4

)
, as h→ 0 and nhq+6

| log h| →∞,

where Haus(A,B) = max

{
r > 0 : sup

x∈A
d(x,B), sup

y∈B
d(y,A)

}
.
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How do we identify the sets of directional local modes M̂ in practice?

I We develop the directional mean shift procedure to estimate M̂ as
(Section 3 in Zhang and Chen 2021c):

x̂(t+1) = −

n∑
i=1

XiL′
(

1−XT
i x̂(t)

h2

)
∣∣∣∣∣∣∣∣ n∑

i=1
XiL′

(
1−XT

i x̂(t)

h2

)∣∣∣∣∣∣∣∣
2

=
∇f̂h(x̂(t))∣∣∣∣∣∣∇f̂h(x̂(t))

∣∣∣∣∣∣
2

for t = 0, 1, ....

m̂

∇f̂h(m̂)

x̂(t)

x̂(t+1)

{
z ∈ Ωq : zT m̂ > 1− r2

2

}
∇f̂h(x̂(t))

Algorithmic Estimation of Local Modes on Ωq
– Directional Mean Shift Algorithm

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 31/56



How do we identify the sets of directional local modes M̂ in practice?

I We develop the directional mean shift procedure to estimate M̂ as
(Section 3 in Zhang and Chen 2021c):

x̂(t+1) = −

n∑
i=1

XiL′
(

1−XT
i x̂(t)

h2

)
∣∣∣∣∣∣∣∣ n∑

i=1
XiL′

(
1−XT

i x̂(t)

h2

)∣∣∣∣∣∣∣∣
2

=
∇f̂h(x̂(t))∣∣∣∣∣∣∇f̂h(x̂(t))

∣∣∣∣∣∣
2

for t = 0, 1, ....

m̂

∇f̂h(m̂)

x̂(t)

x̂(t+1)

{
z ∈ Ωq : zT m̂ > 1− r2

2

}
∇f̂h(x̂(t))

Algorithmic Estimation of Local Modes on Ωq
– Directional Mean Shift Algorithm

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 31/56



We simulate 1000 data points from the following density

f3(x) = 0.3 · fvMF(x;µ1, ν1) + 0.3 · fvMF(x;µ2, ν2) + 0.4 · fvMF(x;µ3, ν3)

with µ1 = [−120◦,−45◦], µ2 = [0◦, 60◦], µ3 = [150◦, 0◦], and ν1 = ν2 = 8, ν3 = 5.
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We also generalize the preceding directional mean shift procedure to
estimate R̂d in practice as the directional subspace constrained mean
shift (DirSCMS) algorithm (Section 4.2 in Zhang and Chen 2022):

x̂(t+1) ← x̂(t)+V̂d(x̂(t))V̂d(x̂(t))T· ∇f̂h(x̂(t))∣∣∣∣∣∣∇f̂h(x̂(t))
∣∣∣∣∣∣

2

and x̂(t+1) ← x̂(t+1)∣∣∣∣x̂(t+1)
∣∣∣∣

2

,

for t = 0, 1, ....

V̂ d(x̂
(t))V̂ d(x̂

(t))T∇f̂h(x̂
(t))

x̂(t)

x̂(t+1)∣∣∣∣∇f̂h(x̂(t)
)
∣∣∣∣

2
· x̂(t)

Algorithmic Estimation of Directional Density Ridges
– Directional Subspace Constrained Mean Shift Algorithm
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.

Figure 17: The underlying circle (blue curve) and sampled points (gray dots) on
Ω2.
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.

Figure 17: Directional SCMS at Step 0
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Figure 17: Directional SCMS at Step 1
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.

Figure 17: Directional SCMS at Step 2
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.

Figure 17: Directional SCMS at Step 4
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.
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We simulate 2000 data points from a circle on Ω2 with additive Gaussian
noises N (0, 0.12) on their Cartesian coordinates and L2 normalization.

Figure 17: Directional SCMS at Step 24 (converged)
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Recall that the observed galactic data {(φi, ηi, zi)}n
i=1 ⊂ Ω2 × R+ are

directional-linear. We consider estimating the density ridges (and local
modes) in a directional-linear product space (Zhang and Chen, 2021a).

• Density estimation at (x, z) ∈ Ωq × R (García-Portugués et al., 2015):
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• Mode-seeking via mean shift on y(t) = (x(t), z(t)):
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
with an extra standardization x(t+1) ← x(t+1)

||x(t+1)||2
.
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• Ridge-Finding via SCMS algorithm on y(t) = (x(t), z(t)) as:

y(t+1) ← y(t) + η · V̂d(y(t))V̂d(y(t))TH−1Ξ(y(t)),
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 .

Here, we design a theoretically motivated and empirically effective step
size as η = min{max(h) ·min(h), 1} = min {h1h2, 1}.

Notes: A naive generalization of SCMS algorithm z(t+1) ← z(t) + V̂d(z(t))V̂d(z(t))TΞ(z(t)) plus

standardization as with pure Euclidean/directional data does not work (Zhang and Chen, 2021a)!
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We sample 1000 observations on a spiral curve with additive Gaussian
noises N (0, 0.22) to their angular-linear coordinates.
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(c) Directional-linear SCMS.

I Our directional-linear SCMS algorithm is stabler than its Euclidean
prototype.
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We prove the (local/global) convergence of our directional mean shift,
DirSCMS, and DirLinSCMS algorithms under some mild regularity
conditions (Zhang and Chen, 2021c,b, 2022, 2021a).
I Question: how fast will our proposed algorithms converge?

Definition (Linear Convergence)

A sequence {yk}k=0,1,.. is said to converge linearly to y∗ if there exists a
positive constant Υ < 1 (rate of convergence) such that
||yk+1 − y∗|| ≤ Υ||yk − y∗||when k is sufficiently large (Boyd et al., 2004).

Convergence Results of the Proposed Methods
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We prove the linear convergence of our proposed algorithms by viewing
them as the first-order method and its subspace constrained variant
with a (smooth) function f on Ωq.

• Gradient Ascent Algorithm on Ωq:

yk+1 = Expyk
(η · grad f (yk)) ,

where η > 0 is the step size and Expx : Tx → Ωq is the exponential
map at x of a (Riemannian) manifold Ωq.

• Subspace Constrained Gradient Ascent Algorithm on Ωq:
yk+1 = Expyk

[
η · Vd(yk)Vd(yk)

Tgrad f (yk)
]
.

(Subspace Constrained) Gradient Ascent on manifolds
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Under some regularity conditions, we prove the followings (Theorem 12
in Zhang and Chen 2021c):

1 Linear convergence of gradient ascent with f : There exists a small radius
r0 > 0 such that when the step size η > 0 is sufficiently small and the initial
point y0 ∈ {z ∈ M : d(z,m) < r0} for some m ∈ Ωq,

d(yk,m) ≤ Υk · d(y0,m) with Υ =

√
1− ηλ∗

2
,

where d(p, q) =
∣∣∣∣∣∣Exp−1

p (q)
∣∣∣∣∣∣

2
and λ∗ > 0 is the eigenvalue bound from 0.

2 Linear convergence of gradient ascent with f̂h: let the sample-based
gradient ascent update on Ωq be

ŷk+1 = Expyk

(
η · grad f̂h(ŷk)

)
.

When the step size η > 0 is sufficiently small and the initial point
ŷ0 ∈ {z ∈ Ωq : d(z,m) < r0} for some m ∈M,

d (ŷk,m) ≤ Υk · d (ŷ0,m) + O(h2) + OP

(√
| log h|
nhq+2

)
with probability tending to 1, as h→ 0 and nhq+2

| log h| →∞.
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All of our proposed methods are encapsulated in a Python package
called SCONCE-SCMS (Spherical and CONic Cosmic wEb finder with
the extended SCMS algorithms; Zhang et al. 2022).

• Python Package Index: https://pypi.org/project/sconce-scms/.
• Documentation: https://sconce-scms.readthedocs.io/en/latest/.

Python Implementation: SCONCE-SCMS

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 42/56

https://pypi.org/project/sconce-scms/
https://sconce-scms.readthedocs.io/en/latest/


SDSS-IV Cosmic Web Catalog
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Step 1 (Slicing the Universe): Partition the redshift range into 325
spherical slices based on the comoving distance ∆L = 20 Mpc.
• Within each slice, we consider the redshifts of galaxies to be the

same so that the galaxies are located on Ω2.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 2 (Density Estimation): Estimate the galaxy density field within
each spherical slice by directional KDE.
• The bandwidth parameter is selected via a data-adaptive approach.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 3 (Denoising): Remove the observations with low-density values.
• We keep at least 80% of the original galaxy data in the slice.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 4 (Laying Down the Mesh Points): We place a set of dense mesh
points on the interested region, which are the initial points of our
DirSCMS iterations.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 5 (Thresholding the Mesh Points): We discard those mesh points
with low-density values and keep 85% of the original mesh points.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 0).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 1).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 2).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 3).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 5).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Step 8).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 19: DirSCMS Iterations (Final).
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Step 7 (Mode and Knot Estimation): We seek out the local modes and
knots on the filaments as cosmic nodes.

Figure 20: Nodes on the detected filaments.
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• The input data incorporate not only galaxy but also quasar (QSO)
observations so as to dive deeper into the Universe.
• We compute the uncertainty measure and other features for each

detected filamentary point.
• The final catalog is available at https://doi.org/10.5281/zenodo.6244866.

Final Cosmic Web Catalog on SDSS-IV Data
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In this talk, we discussed our method for estimating cosmic filament
structures from observed galactic data and its statistical theory.

1 The cosmic filaments is modeled by directional density ridges,
which can be consistently estimated by directional KDE.

2 We designed an efficient algorithm (DirSCMS) to find the
directional density ridges in practical applications.

3 The cosmic web catalog based on our proposed method is publicly
available.

Conclusions

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 53/56



In this talk, we discussed our method for estimating cosmic filament
structures from observed galactic data and its statistical theory.

1 The cosmic filaments is modeled by directional density ridges,
which can be consistently estimated by directional KDE.

2 We designed an efficient algorithm (DirSCMS) to find the
directional density ridges in practical applications.

3 The cosmic web catalog based on our proposed method is publicly
available.

Conclusions

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 53/56



In this talk, we discussed our method for estimating cosmic filament
structures from observed galactic data and its statistical theory.

1 The cosmic filaments is modeled by directional density ridges,
which can be consistently estimated by directional KDE.

2 We designed an efficient algorithm (DirSCMS) to find the
directional density ridges in practical applications.

3 The cosmic web catalog based on our proposed method is publicly
available.

Conclusions

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 53/56



In this talk, we discussed our method for estimating cosmic filament
structures from observed galactic data and its statistical theory.

1 The cosmic filaments is modeled by directional density ridges,
which can be consistently estimated by directional KDE.

2 We designed an efficient algorithm (DirSCMS) to find the
directional density ridges in practical applications.

3 The cosmic web catalog based on our proposed method is publicly
available.

Conclusions

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 53/56



In this talk, we discussed our method for estimating cosmic filament
structures from observed galactic data and its statistical theory.

1 The cosmic filaments is modeled by directional density ridges,
which can be consistently estimated by directional KDE.

2 We designed an efficient algorithm (DirSCMS) to find the
directional density ridges in practical applications.

3 The cosmic web catalog based on our proposed method is publicly
available.

Conclusions

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 53/56



Along this line of research, we are planning to
• Leverage our cosmic filament catalog to identify cosmic voids and

infer the precise cosmology (Sánchez et al., 2016).

Figure 21: Simple void-finding algorithm (Sánchez et al., 2016).

Future Work: Cosmic Void Detection
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• Analyze if galaxy properties, such as stellar mass, color, and star
formation rate, are correlated with our detected cosmic web
structures (Chen et al., 2017; Kotecha, 2020)...
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• Analyze if galaxy properties, such as stellar mass, color, and star
formation rate, are correlated with our detected cosmic web
structures (Chen et al., 2017; Kotecha, 2020)...

0.0 0.5 1.0 1.5 2.0
Angular distances to detected filaments (Degree)

7.25

7.50

7.75

8.00

8.25

8.50

8.75

St
el

la
r m

as
se

s (
M

)

1e10 High Redshift Region (0.55 z < 0.57)

Future Work: Filament Effects of Galaxy Properties

Yikun Zhang Kernel Smoothing, Mean Shift, and Their Applications 55/56



Thank you!
More details can be found in

[1] Y. Zhang and Y.-C. Chen. Kernel Smoothing, Mean Shift, and Their Learning Theory
with Directional Data. Journal of Machine Learning Research, 22(154):1–92, 2021.

https://arxiv.org/abs/2010.13523
[2] Y. Zhang and Y.-C. Chen. The EM Perspective of Directional Mean Shift Algorithm.

arXiv preprint, 2021. https://arxiv.org/abs/2101.10058
[3] Y. Zhang and Y.-C. Chen. Linear Convergence of the Subspace Constrained Mean Shift
Algorithm: From Euclidean to Directional Data. Information and Inference: A Journal of the

IMA, 2022. https://arxiv.org/abs/2104.14977
[4] Y. Zhang and Y.-C. Chen. Mode and Ridge Estimation in Euclidean and Directional

Product Spaces: A Mean Shift Approach. arXiv preprint, 2021.
https://arxiv.org/abs/2110.08505

[5] Y. Zhang, R. S. de Souza, and Y.-C. Chen. SCONCE: A Cosmic Web Finder for Spherical
and Conic Geometries. arXiv preprint, 2022. (To appear in the Monthly Notices of the Royal

Astronomical Society) https://arxiv.org/abs/2207.07001
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Setup: Suppose that we want to recover the true ring/filament structure
across the North and South pole of a unit sphere given some noisy data
points from it.

Figure 22: Noisy observations (red points) and the underlying true
ring/filament structure (blue line)

Why can’t we ignore the spherical geometry? (I)
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The background contour plots are kernel density estimators on the flat
plane [−90◦, 90◦]× [0◦, 360◦) and unit sphere Ω2 =

{
x ∈ R3 : ||x||2 = 1

}
,

respectively.

(a) Euclidean SCMS Method. (b) Directional SCMS Method.

∗ Euclidean SCMS method is the original subspace constrained mean shift algorithm
proposed by Ozertem and Erdogmus (2011).

Why can’t we ignore the spherical geometry? (III)
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Under some regularity conditions (Hall et al., 1987; Bai et al., 1988;
García-Portugués, 2013; Zhang and Chen, 2021c), we have
• Pointwise Consistency: for any fixed x ∈ Ωq,

f̂h(x)− f (x) = O(h2) + OP

(√
1

nhq

)

as h→ 0 and nhq →∞;

grad f̂h(x)− grad f (x) = O(h2) + OP

(√
1

nhq+2

)

as h→ 0 and nhq+2 →∞;

H f̂h(x)−H f (x) = O(h2) + OP

(√
1

nhq+4

)

as h→ 0 and nhq+4 →∞.

Pointwise Consistency of Directional KDE and its Derivatives
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• Uniform Consistency:

‖f̂h − f‖∞ = O(h2) + OP

(√
log n
nhq

)

as h→ 0 and nhq

log n →∞;

sup
x∈Ωq

∣∣∣∣∣∣grad f̂h(x)− grad f (x)
∣∣∣∣∣∣

max
= O(h2) + OP

(√
log n
nhq+2

)

as h→ 0 and nhq+2

log n →∞;

sup
x∈Ωq

∣∣∣∣∣∣H f̂h(x)−H f (x)
∣∣∣∣∣∣

max
= O(h2) + OP

(√
log n
nhq+4

)

as h→ 0 and nhq+4

log n →∞, where ‖g‖∞ = supx∈Ωq
|g(x)| and ||A||max is

the elementwise maximum norm for a matrix A ∈ R(q+1)×(q+1).

Uniform Consistency of Directional KDE and its Derivatives
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Input:
• A directional data sample X1, ...,Xn ∼ f (x) on Ωq

• The order d of the directional ridge, smoothing bandwidth h > 0,
and tolerance level ε > 0.

• A suitable meshMD ⊂ Ωq of initial points.

Step 1: Compute the directional KDE f̂h(x) =
cL,q(h)

n

n∑
i=1

L
(

1−xTXi
h2

)
on the

meshMD.

Step 2: For each x̂(0) ∈MD, iterate the following DirSCMS update until
convergence:

while
∣∣∣∣∣∣∣∣ n∑

i=1
V̂d(x̂(0))V̂d(x̂(0))TXi · L′

(
1−XT

i x̂(0)

h2

)∣∣∣∣∣∣∣∣
2

> ε do:

Detailed Procedures of DirSCMS Algorithm I
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• Step 2-1: Compute the scaled version of the estimated Hessian
matrix as:

nh2

cL,q(h)
Hf̂h(x̂(t)) =

[
Iq+1 − x̂(t)

(
x̂(t)
)T
][

1
h2

n∑
i=1

XiXT
i · L′′

(
1− XT

i x̂(t)

h2

)

+

n∑
i=1

XT
i x̂(t)Iq+1 · L′

(
1− XT

i x̂(t)

h2

)][
Iq+1 − x̂(t)

(
x̂(t)
)T
]
.

• Step 2-2: Perform the spectral decomposition on nh2

cL,q(h)Hf̂h
(
x̂(t)
)

and

compute V̂d(x̂(t)) =
[
vd+1(x̂(t)), ...,vq(x̂(t))

]
, whose columns are

orthonormal eigenvectors corresponding to the smallest q− d
eigenvalues inside the tangent space Tx̂(t) .

Detailed Procedures of DirSCMS Algorithm II
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• Step 2-3: Update

x̂(t+1) ← x̂(t) − V̂d(x̂(t))V̂d(x̂(t))T

∑n
i=1 XiL′

(
1−XT

i x̂(t)

h2

)
∑n

i=1 XiL′
(

1−XT
i x̂(t)

h2

)
 .

• Step 2-4: Standardize x̂(t+1) as x̂(t+1) ← x̂(t+1)

||̂x(t+1)||2
.

Output: An estimated directional d-ridge R̂d represented by the
collection of resulting points.

Detailed Procedures of DirSCMS Algorithm III
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Under some regularity conditions, we prove the following (Theorem 4.6
in Zhang and Chen 2022):

1 R-Linear convergence of d(x(k),Rd) with f . When the step size
η > 0 is sufficiently small and the initial point x(0) lies within a
small neighborhood of its limiting point x∗ inRd,

d
(

x(k),Rd

)
≤ Υk · d

(
x(0), x∗

)
with Υ =

√
1− Υβ0

4
,

where β0 > 0 is the eigengap between the d-th and (d + 1)-th
eigenvalues ofHf (x).

2 R-Linear convergence of d(x̂(k),Rd) with f̂h. When the step size
η > 0 is sufficiently small and the initial point x̂(0) lies within a
small neighborhood of x∗ inRd,

d
(

x(k),Rd

)
≤ Υk · d

(
x(0), x∗

)
+ O(h2) + OP

(√
| log h|
nhq+4

)

with probability tending to 1, as h→ 0 and nhq+4

| log h| → 0.

Linear Convergence of Subspace Constrained Gradient Ascent on Ωq
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• The linear convergence results can also be proved for the subspace
constrained gradient ascent method but under some stricter
conditions (Zhang and Chen, 2022).

• The (directional) mean shift and SCMS algorithms can be viewed as
variants of the (subspace constrained) gradient ascent methods (on
Ωq) but with adaptive step sizes.

• The step sizes can be made sufficiently small as the bandwidth h is
small and the sample size n is large, but also universally bounded
away from 0 with respect to the iteration number t.

Linear Convergence of Mean Shift and SCMS Algorithms
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Figure 24: Cosmic filament detection in the 3D (RA,DEC,Redshift) space with
our directional-linear SCMS algorithm.

Application of DirLinSCMS to SDSS-IV Galaxy Data
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