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L"."l Inference on Galactic Stellar Mass

Declination

Right Ascension
*  Galaxy with stellar mass A Galaxy without stellar mass

Observed galaxies on the high redshift slice 0.4 ~ 0.401.

» Notes: Sloan Digital Sky Survey (SDSS) observes millions of galaxies, but some (estimated) galactic

stellar masses are missing in the associated value-added catalog (Comparat et al., 2017).
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A" YA Inference on Galactic Stellar Mass

Declination

Right Ascension
*  Galaxy with stellar mass A Galaxy without stellar mass

Observed galaxies on the high redshift slice 0.4 ~ 0.401.

» Scientific Question:

How can we quantify the uncertainty of the (estimated) stellar mass of a newly
observed galaxy based on the spectroscopic and photometric properties?

» Notes: Sloan Digital Sky Survey (SDSS) observes millions of galaxies, but some (estimated) galactic

stellar masses are missing in the associated value-added catalog (Comparat et al., 2017).
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W Inference on Galactic Stellar Mass

» High-dimensional Covariates:

Generate nonlinear features to capture complex patterns (Chang et al.,
2015; Belloni et al., 2019).
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W Inference on Galactic Stellar Mass

» High-dimensional Covariates:

Generate nonlinear features to capture complex patterns (Chang et al.,
2015; Belloni et al., 2019).

» Reasons for Missingness:
Limiting usage of the observational run in SDSS for galaxy targets;
Potential data contamination;

Misclassification of galaxies as stars.

» Statistical Problem:

How can we conduct valid and efficient inference on the regression function
despite missing outcomes?
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W Model Assumptions

Linearity: The data {(Y;, R;, X;)}._, are i.i.d. observations from a
sparse linear model

Y=X"By+e with E(eX)=0 and E(&|X) =07,

where ||3]|, = s < dand R € {0,1} when Y is missing or not.
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sparse linear model

Y=X"By+e with E(eX)=0 and E(&|X) =07,
where ||3]|, = s < dand R € {0,1} when Y is missing or not.

Relaxing the linearity assumption:
Sparse additive model (Ravikumar et al., 2009);

Partially linear model (Miiller and van de Geer, 2015).

Our method can be generalized to handle heteroscedastic errors.
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W Model Assumptions

Linearity: The data {(Y;, R;, X;)}/_, are i.i.d. observations from a
sparse linear model

Y=X"By+e with E(eX)=0 and E(&|X) =07,
where ||3]|, = s < dand R € {0,1} when Y is missing or not.
Relaxing the linearity assumption:

Sparse additive model (Ravikumar et al., 2009);
Partially linear model (Miiller and van de Geer, 2015).
Our method can be generalized to handle heteroscedastic errors.

Missing At Random (MAR): Y; 1L R;|X; fori=1,...,n.

Yikun Zhang High-Dimensional Inference With Missing Outcomes 4/22



A" YA Related Literature on High-Dimensional Inference

The existing works focus on the statistical inference on 3 € R?.
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A" YA Related Literature on High-Dimensional Inference

The existing works focus on the statistical inference on 3 € R?.

Fully Observed Outcomes: Debiased Lasso (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and Montanari, 2014):

PO S P 5
5deb1as =B\ + a@zxi(yz' - X?ﬁ)x)»
i=1

-~

Ba is a Lasso solution under the regularization parameter A > 0;

~ . - . -1
O € R™ is an approximation to the matrix inverse (% S XXF ) .
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A" YA Related Literature on High-Dimensional Inference

The existing works focus on the statistical inference on 3 € R?.

Fully Observed Outcomes: Debiased Lasso (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and Montanari, 2014):

PO S P 5
5deb1as =B\ + a@zxi(yz' - X?ﬁ)x)»
i=1

B is a Lasso solution under the regularization parameter A > 0;

~ . - . -1
O € R™ is an approximation to the matrix inverse (% S XXF ) .

MAR Outcomes: M-estimation framework with a Lasso-type
debiased and doubly robust estimator (Chakrabortty et al., 2019).
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A" YA Our Contributions

» Drawbacks of Existing Approaches: Inference on 3, € R¥.
Need to compute a d x d debiasing matrix o.

Require sample splitting or cross fitting for valid inference.
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A" YA Our Contributions

» Drawbacks of Existing Approaches: Inference on 3, € R¥.
Need to compute a d x d debiasing matrix o.

Require sample splitting or cross fitting for valid inference.

» Our Focus: Inference on my(x) = x7 3.

Computational efficiency: Our debiasing program is convex and only
needs to solve for an n-dimensional weight vector.

Statistical efficiency: Our estimator is semi-parametrically efficient
among all asymptotically linear estimators.
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W Heuristics From Debiased Lasso

The debiased Lasso estimator on the complete-case data is given by

n
B\debias _ B)\ 4 % ;Riéxi (Yz' — XITB)\) .
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The debiased Lasso estimator on the complete-case data is given by

n
B\debias _ B)\ 4 % ;Riéxi (Yz' — XITB)\) .

The candidate debiased estimator for my(x) = x” 3y is

- debi b S~ 1 A -
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W Heuristics From Debiased Lasso

The debiased Lasso estimator on the complete-case data is given by

n
B\debias _ B)\ 4 % ;Riéxi (Yz' — XITB)\) .

The candidate debiased estimator for my(x) = x” 3y is

- debi b S~ 1 A -
mdeblaS(x) _ xTﬁdeblas _ xTﬁ)\ + EXTG ZRiXi (Yl _ XlTﬁ/\) )
i=1

» Issue: This naive estimator may not be asymptotically normal in
general (van de Geer et al., 2014; Javanmard and Montanari, 2014)!
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W Heuristics From Debiased Lasso

~ debi ~debi ~ 1 1a¢ ~
mdeb1aS(x) _ xTﬁdeblas _ XTﬂ,\ + E’YT@ ZRZ,X[ (Yz _ XzTBk) .
i=1
» Idea: Introduce a weight vector w = (wy, ...,w,)T € R" to replace
1 1 .
—x0X; — w; for i=1,.., n
n

and formulate a generic debiased estimator

) ~ 1 <& R
~debias /.. _ T 1R . _xT
A g w) = 2T ;:1 WiR; (YZ bé B) . (1)
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W Heuristics From Debiased Lasso

i . —~ 1 & ~
mdeb1aS(x) _ xTﬁdeblas _ xTﬂ,\ + E’YT@ ZRZ,X[ (Yz _ XzTBk) .
i=1
» Idea: Introduce a weight vector w = (wy, ...,w,)T € R" to replace

1 ~ .
—xTOX; = w; for i=1,.., n
n

and formulate a generic debiased estimator

A

. —~ 1 n
~debias ... AT 717 R. . xT
m (x, w) =xp+ \f ; 1 w;R,; (YZ Xl ﬂ) (@)

» Question: How do we estimate the weight vector w = (wy, ..., w,)T?
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A" Yl Conditional Mean Squared Error Decomposition

The conditional mean squared error of v/n m4e13 (x; w) is

E |:(\/ﬁmdebias(x; w) — \/ﬁmo(x))z ‘Xh ...,Xn:|
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AV Y Conditional Mean Squared Error Decomposition

The conditional mean squared error of v/n m4e13 (x; w) is

E[(\/ﬁmdebias(x;w) Vnmg(x )‘Xl,...,X}

2
n 1 n T
2 2 P .
= o2y wim o+ N > wimX;—x | Vn(f - B)
i=1 i=1
Main Conditional Variance Conditional Bias

Zwﬂ'z )XX (BO_B)

Asymptotically Negligible Conditional Variance

» Notes: 7; := P(R; = 1|X;) is the propensity score under the MAR condition.
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A" YA Bias-Variance Trade-off Optimization

E |:<\/ﬁmdebias(x;w) — \/ﬁmo(x)>2 ‘Xh ...7X,,]

2

n 1 T

= ag E w‘l?'m + 7 E w;mX; — X ﬁ(b’o —B)
n
i=1 i=1
Main Conditional Variance Conditional Bias
By Holder’s inequality,

2

1 n
“Conditional Bias” < 7 Z wimiX; —x||  vnllBo — Bl
n
i=1

o
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A" YA Bias-Variance Trade-off Optimization

E |:<\/ﬁmdebias(x;w) — \/ﬁmo(x)>2 ‘Xh ...7X,,]

2
n ] n T
= a§ E w‘l?'m + — g w;mX; — X ﬁ(b’o —B)
; V4
i=1 i=1
Main Conditional Variance Conditional Bias
By Holder’s inequality,
2
1 n -
“Conditional Bias” < NG g wimiX; —x||  vnllBo — Bl
n
i=1 00
We design our debiasing program as:
- v
min E w7, subjectto ||x — g w; - - X < -
weR" < ] n
P

oo
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A" "l Our Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data

BERE

N 1
B\ = arg min [2” g Ri(Yi = X[ 8)* + A ||5|1] :
i—1
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A" "l Our Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data

BERE

N 1
B\ = arg min |2n ;Ri(yi - X/ B)? +)‘||5|1] :

Obtain consistent propensity score estimates 7;,i = 1,...,n by any
machine learning method.
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A" "l Our Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data

N 1
B\ = arg min |2n ;Ri(yi - X/ B)? +)‘||5|1] :

BERE

Obtain consistent propensity score estimates 7;,i = 1,...,n by any
machine learning method.

Solve the debiasing program defined as:

n
min E Tw?
weR" | £ 7

i=

<7}.
n
o0

1 &
[ — -.A4. .
X figlw, 7 - X;
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A" "l Our Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data

E,\ = arg min [ ZR XTB +)\||ﬁ|1] )

BERE

Obtain consistent propensity score estimates 7;,i = 1,...,n by any
machine learning method.

Solve the debiasing program defined as:

n
min E Tw?
weR" | £ 7

i=

1 n

| <7}'
n
o0

Define the debiased estimator for ny(x) = x 3 as:

debias (y. ) — ¥ B 4 T sz‘Ri (Yi - XlTﬁ) :
i=1
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A" "l Our Debiasing Inference Procedure

How to select the tuning parameter v > 0 for our debiasing program?

n 1 n ~
min E %iw?: X — — E w,--%i-X,- < —>.
weR" —1 \/ﬁ i—1 n

1= 1=

oo

Is our debiased estimator asymptotically normal?

mdeblaS(x; w) — XTB + ﬁ ;wiRi (Yi - X;TB) .
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A" "l Our Debiasing Inference Procedure

How to select the tuning parameter v > 0 for our debiasing program?

n
. ~ Y
min E 7T,'w12 : < —>.
weR" - n
i=1 00

1
- — E w; - T - X
X \/ﬁl:1 i T 1

Is our debiased estimator asymptotically normal?

mdeblaS(x; w) — XTB + ﬁ ;wiRi (Yi - X;TB) .

» Answer: The above two questions can be addressed by the dual
formulation of our debiasing program!
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A"\"A Dual Formulation of Our Debiasing Program

» Primal Program:

n 1 n ~y
min E %iwiz: X — — E wi~7/f,'~X1' < -
wer! i=1 \/ﬁ i=1 n

(oo}
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A"\"A Dual Formulation of Our Debiasing Program

» Primal Program:

n 1 n ~y
min E %iwiz: X — — wi~7/f,'~X1' < -
n

i=1

weR" \/77 i1 -
» Dual Program:
1 & 2 vy
min ¢ - dom(XTe) +aTe+ - el
i=1
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A"\"A Dual Formulation of Our Debiasing Program
» Primal Program:
- gl
i Tw? : <=5
= o
» Dual Program:
: 1 - T 2 T Y
min EZW,-(XJ) +x €+E||€Hl .

LeR?
€ i=1

1 n
[ — . A. . .
X Tn ;:1 w; -7 - X;

» Primal-Dual Relation: Under the strong duality,

~ 1 -~ )
W, =——— ~X1-T£ for i=1,..,n.

2v/n
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A" YA Theory and Practice of Our Dual Debiasing Program

» Dual Program:

. 1 & 2
mln{4Z7rj(XiT€) +xT€+Z||€||1}.

LR n
€ i=1

It is an unconstrained optimization problem, and v > 0 can be
fine-tuned via cross-validation.
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A" YA Theory and Practice of Our Dual Debiasing Program

» Dual Program:
1 « 2 ¥
: =~ (xT T
ﬁﬁi{%{%;m(xi@ +x €+n||€||1}.

It is an unconstrained optimization problem, and v > 0 can be
fine-tuned via cross-validation.

Primal-dual relation w; = —5 f XT€ ..., n and dual consistency
75 £y reveal that
Vi | mdebias (: p) — mo(x)} = Z R;€e;XTto + “Bias terms”
—_———
op(1)
iid. sum!
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A" "l Consistency and Asymptotic Normality

Theorem (Theorem 7 in Zhang et al. 2023)
Under regularity conditions,
Vi [0 s @) — mo(x)] 5 N (0, 7 (x)

with 02 (x) = limy_yee 02 - xT [E (RXXT)] ™" x.
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Theorem (Theorem 7 in Zhang et al. 2023)

Under regularity conditions,
Vi [0 s @) — mo(x)] 5 N (0, 7 (x)

with 02, (x) = limy, o 0% - x7 [E (RXXT)] " .

For any fixed dimension d > 0, the asymptotic variance

o2 2" [E(RXXT)] ' x

attains the semi-parametric efficiency bound among all asymptotically
linear estimators under MAR outcomes (Miiller and Keilegom, 2012).
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A" "l Consistency and Asymptotic Normality

Theorem (Theorem 7 in Zhang et al. 2023)

Under reqularity conditions,
Jn |:T';ldebia5(x; W) — mo(x)] AN (07 a,zn(x))
with 02, (x) = limy, o 0% - x7 [E (RXXT)] " .

For any fixed dimension d > 0, the asymptotic variance

o2 2" [E(RXXT)] ' x

attains the semi-parametric efficiency bound among all asymptotically
linear estimators under MAR outcomes (Miiller and Keilegom, 2012).

Under regularity conditions (Proposition 8 in Zhang et al. 2023),

n
23 7@ 5 o2 T [E(RXXT)] .
i=1
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A"V Theoretical Insights into Propensity Score Estimation

Sample splitting or cross fitting is often required in debiased inference
via machine learning methods (Chernozhukov et al., 2018).
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A"V Theoretical Insights into Propensity Score Estimation

Sample splitting or cross fitting is often required in debiased inference
via machine learning methods (Chernozhukov et al., 2018).

Why don’t we need sample splitting or cross fitting for estimating the
propensity score by any machine learning method?

» Answer: Our asymptotic normality result depends on the in-sample
estimation error r, of the propensity score:

max |7/T\'i—ﬂ'i| =0Op (Vﬂ-) with 7Ti:7T(Xi),i:1,...,Tl.
1<i<n

Our debiased estimator performs even better when the estimated
propensity scores on the training data are close to the true ones!!
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A"V Theoretical Insights into Propensity Score Estimation

Sample splitting or cross fitting is often required in debiased inference
via machine learning methods (Chernozhukov et al., 2018).

Why don’t we need sample splitting or cross fitting for estimating the
propensity score by any machine learning method?

» Answer: Our asymptotic normality result depends on the in-sample
estimation error r, of the propensity score:

max |7/T\'i—ﬂ'i| =0Op (Vﬂ-) with 7Ti:7T(Xi),i:1,...,Tl.
1<i<n

Our debiased estimator performs even better when the estimated
propensity scores on the training data are close to the true ones!!

This permits the use of complex machine learning methods with high
learnability (Steinwart, 2001; Farrell et al., 2021; Gao et al., 2022).
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A" " Simulation Result

Lasso Pilot Estimate

Debiased Estimator (1SE)

Debiased Estimator (min-feas)

0.5 Complete-Case
== Oracle
o0a = = Density of A0, 1)

== = Density of A0, 1)

-2 0 2
Vi [m(x) = mo(x)|/Gm(x)

» Effectiveness of Our Debiased Estimator:

Correct the bias of the Lasso pilot estimate.

== = Density of A10,1)

Asymptotically normal under a wide range of v > 0.

» Notes: Our paper contains comprehensive comparisons with other existing methods.

Yikun Zhang
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W Results on Galactic Stellar Mass Inference

How can we quantify the uncertainty of the (estimated) stellar mass of a galaxy
based on the spectroscopic and photometric properties?
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W Results on Galactic Stellar Mass Inference

How can we quantify the uncertainty of the (estimated) stellar mass of a galaxy
based on the spectroscopic and photometric properties?

Refit == Stellar Mass by Firefly

Debias (LR, min-feas)

Debias (LR, 1SE)

Debias (LR, min-CV)

Debias (NN, min-feas)

Debias (NN, 1SE)

Debias (NN, min-CV)

Debias (NNcal, min-feas)

Debias (NNcal, 1SE)

Debias (NNcal, min-CV) I |

20 25 30 35 40
95% Confidence Intervals of Estimated Stellar Masses

The 95% confidence intervals by our debiasing methods cover the true
stellar mass of a new galaxy.
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W Results on Galactic Stellar Mass Inference

Is it statistically significant that the stellar mass of a galaxy is negatively
correlated with its distance to the nearby cosmic filament structures?

R-Proj{ == H, %

|
|
Refit 1
|
|

Debias (LR) 1 I

Debias (NN)

Debias (NNcaI)<:

—0.06 -0.04 -002 0.00  0.02
95% Confidence Intervals

95% confidence intervals by our debiasing methods exclude 0 and are
all negative.
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A"V Summary of the Talk

We present an efficient debiasing method for conducting valid inference
on high-dimensional linear models with MAR outcomes.
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The dual form explains its computational and statistical efficiencies.
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A& Summary of the Talk

We present an efficient debiasing method for conducting valid inference
on high-dimensional linear models with MAR outcomes.

The dual form explains its computational and statistical efficiencies.

The nuisance propensity score can be nonparametrically estimated
without sample splitting or cross fitting.

A novel application to the inference on galactic stellar mass.

More details can be found in

[1]1Y. Zhang, A. Giessing, and Y.-C. Chen. Efficient Inference on High-Dimensional Linear
Models with Missing Outcomes. arXiv preprint, 2023. https://arxiv.org/abs/2309.06429.

Python Package: Debias-Infer and R Package: DebiasInfer.
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A& Summary of the Talk

We present an efficient debiasing method for conducting valid inference
on high-dimensional linear models with MAR outcomes.

The dual form explains its computational and statistical efficiencies.

The nuisance propensity score can be nonparametrically estimated
without sample splitting or cross fitting.

A novel application to the inference on galactic stellar mass.

More details can be found in

[1]1Y. Zhang, A. Giessing, and Y.-C. Chen. Efficient Inference on High-Dimensional Linear
Models with Missing Outcomes. arXiv preprint, 2023. https://arxiv.org/abs/2309.06429.

Python Package: Debias-Infer and R Package: DebiasInfer.

Thank you!
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A" YA Implementation Details of the Proposed Debiasing Method

Lasso pilot estimate: We adopt the scaled Lasso (Sun and Zhang,
2012) with its universal regularization parameter Ao = 4/ % as the

initialization. Specifically, it iteratively updates B(N),5.(N), A via the
jointly convex optimization program:

(5(),5.)) = argmin [ MFZR - X8+ % +AIBII1]-

BERY, 0. >0

Debiasing program: We solve the primal program by Python package
“CVXPY” (Diamond and Boyd, 2016; Agrawal et al., 2018) or R
package “CVXR” (Fu et al., 2020). For the dual program, we
formulate a coordinate descent algorithm (Wright, 2015) as:

{Z(x)}] . Sw ( 2n Zz 17711(2:7&] sz {é( )}k> 7x],)

1 2
2n i=1 1X

for j=1,...,d,

where Sx (1) = sign(u) - (u—12) . Is the soft-thresholding operator.
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A" Yl One Standard Error (1SE) Rule For Model Selection

Suppose that we conduct a K-fold cross-validation on a candidate set
I' = {71, ..., ym} of the tuning parameter.

For each «; € T, we compute the cross-validated risk or error on each
fold of the data as:
CVi(yi), k=1,..,K

For each v; € T, we calculate the standard error of CV1(v,), ..., CVk (i)
as:

SD(y;) = v/Var (CVi(%), -..,CVk(%)), SE(v) = SD(v)/VK.

Let

K
1 o~ .
CV(y) = X Z CVi(v) and 7= arggln CV(9).
k=1 ¥

The 1SE rule (Breiman et al., 1984; Chen and Yang, 2021) selects
v1se € T with as the one with the smallest CV () such that

CV(nse) = CV(7) + SE(A).
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A" Yl One Standard Error (1SE) Rule For Model Selection

A

Region Defined by One
Standard Error Rule

Mean Prediction
Error

Y

Figure: Illustration of the 1SE rule for selecting the model parameter.
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A" YA Interpretations From Neyman Near-Orthogonalization

Consider the regression function m = m(x) € R as the main parameter
to be inferred and 3 € RY as the high-dimensional nuisance parameter.

Our generic debiased estimator m9 (x, w) solves the sample-based
estimating equation

% Z Se(Yi, Ry, Xi; mi®, 3) = m ™ (x; ) —x ,377 Z w;-R (yi - X,-Tﬂ) =0.
i=1

The Neyman near-orthogonalization condition (Chernozhukov et al.,

2018) given X = (X, ..., X,)T € R"™? at (my, By) = (xT By, Bo) requires
1 n

E [n > Ea(Yi, Ri, Ximo, fo)| X

i=1

=0,

1 n
n ZEX(YthXi%m»B)’X]

i=1

! 5
} (B—Bo)| < —
(mg,Bo)

9]
su —E
per {35

where 7, is a properly shrinking neighborhood of 8 and §, = o(1).
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A" YA Interpretations From Neyman Near-Orthogonalization

Both conditions in (2) hold true, because for any § € 7, and some
convex set B containing 3, we have that

T
{ Zaﬁ Y17R17X17m ﬁ ‘X |<”10Y/80)} (ﬁ_ﬁo)

T

(Bo—B)

= [x— \}ﬁgwim(X,v)X,v
X — —Zwl 7 X;

< p ||5 — Bll; by the box constraint in our debiasing program

o

Hﬂ — S|, by Hoélder’s inequality

5”
<
v

Our debiasing program optimizes the (estimated) variance among all
the estimators satisfying Neyman near-orthogonalization (2).

(2) also allows our debiasing program to de-correlate the Lasso pilot
regression from propensity score estimation and weight optimization.

by setting 7, = {,8 EBCR:||B—foll, <
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A""A Theoretical Implications of Our Dual Debiasing Program

» Goal: Establish the asymptotic normality of our debiased estimator

Adebias(x ZU) _ XTB 4+ — Zwl ; (Yz _ X;TB\) )
Linearity assumption Y; = XiTﬁo +efori=1,...,n implies

- ZwRX Vi (B-5),

\/ﬁ [fﬁdebiaS(x; ,a\]) _ MQ(X)] = Z@"Riei +
i=1

Not an i.i.d. sum!

Dual relation w; = —3 f XTK fori =1,...,n and dual consistency

RS ly reveal that

T
7> debias 5 1 B
\/ﬁ[mdb (x;w)*mo(x)] IZRGXTWF x*ZRXXTéi ‘/ﬁ<ﬁ°75)

= 2\[ ZR € X £y + “Bias t(?;‘ms
op

iid. sum!
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A" YA Regularity Conditions For the Asymptotic Theory

The covariate vector X € R? and the noise ¢ € R are sub-Gaussian.

There exists a constant kg > 0 such that

inf E[R(XT0P] > nk with 7= {xeR’:|xll,=1}.

vesi-1
Givenany n > 1and § € (0, 1), there exists r = r.(n,6) > 0 such that
P (max |7t; — | > r,r> <6 with m=n(X;),i=1,..,n.
1<i<n

Define the population dual program as:

min {i E[R(X"0)"] + xTe} :

LeRd

whose exact solution is £p(x) = —2 [E (RXXT)] ! x. We assume that
the r¢-approximation £(x) to {y(x) is sparse with r, € [0, 1], i.e.,

se(x) = ||| < mingn.d} with ) = argmin {|lully : ||« = @ ]> < re [lo(@)Il}
ueR
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A" YA Experimental Setups and Evaluation Metrics

Methods to be compared:
“DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).
“DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

“Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

Implementation settings of the above methods:

Complete-case (CC) data {(X;, Yi,Ri = 1)}iLy;

Inverse probability weighted (IPW) data i , Y J R = 1>} ;
probability weighted (IPW) data { (2%, 2 |

Oracle fully observed data (X;, Y;) fori =1,...,n.
Evaluation metrics over 1000 Monte Carlo experiments:
Average absolute bias |ﬁ1debias(x) — mp(x) ’;

Average coverage and average length of the yielded 95% confidence intervals.
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Simulation Results Under Gaussian Noises (I)
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Figure: Sparse 3, and sparse x® with X; ~ Nz (0,5%),i=1,...,n.
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Simulation Results Under Gaussian Noises (II)
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Figure: Pseudo-dense Bgd and sparse @ with X; ~ N (0,2),i=1, ..
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A"\ Simulation Results Under Laplace (0,1/v2) Noises
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A" YA Simulation Results Under t,-Distributed Noises
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A" YA Proposed Method With Nonparametric Propensity Scores

True propensity score model: P(R; = 1|X;) = ® (—4 + Zle Zik>,
where (Zj, ..., Zi) contains all polynomial combinations of the first
eight components Xy, ..., Xjs of X; € R1%% with degrees < 2.

Estimate the propensity scores 7(X;),i = 1, ..., n by the following
nonlinear/nonparametric machine learning methods:

Gaussian Naive Bayes (“NB”).

Random Forest (“RF”): 100 trees, bootstrapping samples, and the Gini
impurity.

Support Vector Machine (“SVM?”): Gaussian radial basis function.

Neural Network (“NN”): Two hidden layers of size 80 x 50 and ReLU
h(x) = max{x, 0} as the activation function.

Include an extra evaluation metric as the average mean absolute error
(“Avg-MAE”) for the estimated propensity scores.
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A" Y Simulation Results With Nonparametric Propensity Scores
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A" Y Simulation Results With Nonparametric Propensity Scores
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A" YA Study Design For Stellar Mass Inference

Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ~ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

» Final Dataset: n = 1185 and d = 1409.
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A"V Potential Application to Causal Inference (I)

The observable data in causal inference are
{(YhThXi)}?:l CRx {07 1} X Rd‘
T; € {0,1} is a binary treatment assignment indicator;

Y; =T;-Y(1); + (1 — T;) - Y(0); with Y(0), Y(1) as potential outcomes.

» Objective: Conduct valid inference on E [Y(1)|X, T = 1].

x{ Y (1),
Treatment Group : 3 IS
XE Y (1) y
s il EY(D)IX, T =1]
X based on
241 '
Control Group . ) {(Y(l)i’ i, XZ)}I’L:l
X!
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A" YA Potential Application to Causal Inference (II)

Our debiasing method can be extended to valid inference on the
high-dimensional linear average conditional treatment effect (ACTE)

E[Y(1) - Y(0)|X].

The modified debiasing program with tuning parameters v;,7, > 0 is

arg min Z [ﬂ'z W) +(1- i)w?<0)]

w(o) () R

1 ~
x—ﬁgwiu) ~7Tl‘~X,‘

Sl and
n

1
X — —= Zwi(o) (1 - %,) X
\/ﬁ i=1

oo oo

The extended debiased estimator becomes
~debias =~ =~
m (x; w(1)7w(o))

=x" (3(1) - B(o)) + % 2”: [@im) - T (Yz‘ - X,'TE(U) — Wiy - (1 —T}) (Yz - X,'TB(O))] .
i=1

The efficiency theory for this modified procedure is worth studying!
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A" YA Potential Application to Causal Inference (II)

Our debiasing method can be extended to valid inference on the
high-dimensional linear average conditional treatment effect (ACTE)

E[Y(1) - Y(0)|X].
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arg min Z [ﬂ'z W) +(1- i)w?<0)]

w(o) () R

1 ~
x—ﬁgwiu) ~7Tl‘~X,‘

Sl and
n

1
X — —= Zwi(o) (1 - %,) X
\/ﬁ i=1

oo oo

The extended debiased estimator becomes
~debias =~ =~
m (x; w(1)7w(o))

=x" (3(1) - B(o)) + % 2”: [@im) - T (Yz‘ - X,'TE(U) — Wiy - (1 —T}) (Yz - X,'TB(O))] .
i=1
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W Finger-of-God and Kaiser Effects

The galaxy distribution is distorted along the line of sight due to the
peculiar velocities of galaxies, i.e., the so-called finger-of-god (Jackson,
1972) and Kaiser (Kaiser, 1987) effects.

Figure: Redshift distortions along the line of sight (Kuchner et al., 2021).
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