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W Problem of Interest

Consider a random sample {(Y;,R;, X;)}_, drawn from the joint
distribution of (Y, R, X), where

Y € R is the outcome variable that could potentially be missing;
R € {0, 1} is the indicator of Y being observed;

X € R? is the high-dimensional covariate vector with d > n.
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Consider a random sample {(Y;,R;, X;)}_, drawn from the joint
distribution of (Y, R, X), where

Y € R is the outcome variable that could potentially be missing;
R € {0, 1} is the indicator of Y being observed;
X € R? is the high-dimensional covariate vector with d > n.

» Central Question of Interest:

How can we conduct statistically and computationally efficient inference on
mo(x) = E(Y|X = x) despite missing outcomes?
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A" "8 Motivations: High-Dimensional Data

The covariates are easier to obtain within some population.
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Micro-array gene expression data in biology (Carvalho et al., 2008).

Home-price data with cross-sectional effects (Fan et al., 2011).
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Home-price data with cross-sectional effects (Fan et al., 2011).

Incorporating as many covariates as possible can control for potential
confounders in causal inference (Wyss et al., 2022).
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Micro-array gene expression data in biology (Carvalho et al., 2008).

Home-price data with cross-sectional effects (Fan et al., 2011).

Incorporating as many covariates as possible can control for potential
confounders in causal inference (Wyss et al., 2022).

Generating high-dimensional covariates with interaction terms or
spline features enables the simple parametric (e.g., linear) model to
capture complex patterns (Belloni et al., 2019).
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A" "l Motivations: Missing Outcomes

The response/outcome variable in observational data could be missing.
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A" "l Motivations: Missing Outcomes

The response/outcome variable in observational data could be missing.

Participants may drop out from the study in clinical trials (Higgins
et al., 2008).

The semi-supervised learning, where additional samples without
labels are provided, is a missing-outcome problem (Chapelle et al.,
2006).

» More Concrete Example: Some (estimated) stellar masses of the
observed galaxies in the Sloan Digital Sky Survey (SDSS-1V) are missing
in the Firefly value-added catalog (Comparat et al., 2017).
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w Motivations: Stellar Mass Inference Problem

The missingness of (estimated) stellar masses is due to
Limiting usage of the observational run in SDSS-1V for galaxy targets;

Potential data contamination;

Misclassification of galaxies as stars.
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Figure 1: Galaxy distribution at a high redshift slice 0.4 ~ 0.401.
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Figure 1: Galaxy distribution at a high redshift slice 0.4 ~ 0.401.

» Scientific Question: How can we conduct valid inference on the

(estimated) stellar mass based on the spectroscopic and photometric properties?
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A" " Challenges and Model Assumptions

To tackle the challenges of high-dimensional data with missing
outcomes, we impose two basic assumptions.
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To tackle the challenges of high-dimensional data with missing
outcomes, we impose two basic assumptions.

(Linearity) The data {(Y;,R;, X;)}\_; C R x {0,1} x R? are i.i.d.
observations from a sparse linear model

Y=X"By+e with E(X)=0 and E(&|X) =07

d
where |[Bollg = > —1 Lpu0y = 55 < d.
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To tackle the challenges of high-dimensional data with missing
outcomes, we impose two basic assumptions.

(Linearity) The data {(Y;,R;, X;)}\_; C R x {0,1} x R? are i.i.d.
observations from a sparse linear model

Y=X"By+e with E(X)=0 and E(&|X) =07
d
where [|Bolg = > 25—y Ligy0p = 55 < d.
» Notes: The linearity assumption can be relaxed to
Sparse additive model (Ravikumar et al., 2009);

Partially linear model (Miiller and van de Geer, 2015);

Approximately/weakly sparse linear model (Belloni et al., 2019).
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To tackle the challenges of high-dimensional data with missing
outcomes, we impose two basic assumptions.

(Linearity) The data {(Y;,R;, X;)}\_; C R x {0,1} x R? are i.i.d.
observations from a sparse linear model

Y=X"By+e with E(X)=0 and E(&|X) =07

d
where |[Bollg = > —1 Lpu0y = 55 < d.

» Notes: The linearity assumption can be relaxed to
Sparse additive model (Ravikumar et al., 2009);
Partially linear model (Miiller and van de Geer, 2015);

Approximately/weakly sparse linear model (Belloni et al., 2019).

(Missing At Random; MAR) Y; L R;|X; fori=1,...,n.
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AV YA Existing Works on High-Dimensional Inference

The existing works focus mainly on the statistical inference on 3, € R.
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AV YA Existing Works on High-Dimensional Inference

The existing works focus mainly on the statistical inference on 3, € R.

(Fully observed outcomes) Debiased Lasso is applicable (Zhang and
Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari,
2014):

cdebms 5 1A 3
ﬁdeblas =By + EQZXi(Yi — X,'Tﬁ)\)a
i=1

—~ n

Bx =argmin | £ Y (Vi — X[ B)* + A H6||1] is a Lasso solution with the
BeRA i=1

regularization parameter A > 0;

A . o - -1
O € R is an approximation to the matrix inverse (I xxh) .
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AV YA Existing Works on High-Dimensional Inference

The existing works focus mainly on the statistical inference on 3, € R.

(Fully observed outcomes) Debiased Lasso is applicable (Zhang and
Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari,
2014):

cdebms 5 1A 3
ﬁdeblas =By + EQZXi(Yi — X,'Tﬁ)\)a
i=1

n

Bx = argmin | £ SYi = XTB)? + A H6||1] is a Lasso solution with the

2n
BERA i=1

regularization parameter A > 0;

A . o - -1
O € R is an approximation to the matrix inverse (I xxh) .

(MAR outcomes) Chakrabortty et al. (2019) proposed an M-estimation
framework with a Lasso-type debiased and doubly robust estimator.
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AV YA Drawback of Existing Works and Our Contributions

» Drawbacks of the Existing Approaches:

(Computational issue) They require a good approximation to the d x d
debiasing matrix O.

(Loss of statistical efficiency) Sample splitting or cross-fitting is
necessary for the M-estimation framework.
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AV YA Drawback of Existing Works and Our Contributions

» Drawbacks of the Existing Approaches:

(Computational issue) They require a good approximation to the d x d
debiasing matrix O.

(Loss of statistical efficiency) Sample splitting or cross-fitting is
necessary for the M-estimation framework.

» Our Contributions: Focus on the inference of n1y(x) = x7 3y instead.

(Computational efficiency) Our core debiasing program is convex and
only needs to solve for a n-dimensional weight vector.

(Statistical efficiency) Our debiased estimator is semi-parametrically
efficient among all asymptotically linear estimators.
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AV YA Highlights of Today’s Presentation

Introduce our efficient debiasing method for inferring my(x) = x7 ;.
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Introduce our efficient debiasing method for inferring my(x) = x7 ;.

Estimate 7(X) = P(R = 1|X) via any machine learning methods.
Design our debiasing program based on bias-variance trade-offs.

Fine-tune the program from its dual so as to debias the Lasso solution.
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Introduce our efficient debiasing method for inferring my(x) = x7 ;.

Estimate 7(X) = P(R = 1|X) via any machine learning methods.

Design our debiasing program based on bias-variance trade-offs.
Fine-tune the program from its dual so as to debias the Lasso solution.

Discuss the asymptotic normality and semi-parametric efficiency of
our final debiased estimator.
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Introduce our efficient debiasing method for inferring my(x) = x7 ;.
Estimate 7(X) = P(R = 1|X) via any machine learning methods.
Design our debiasing program based on bias-variance trade-offs.

Fine-tune the program from its dual so as to debias the Lasso solution.

Discuss the asymptotic normality and semi-parametric efficiency of
our final debiased estimator.

Demonstrate the finite-sample performances via simulations and
present an application to the stellar mass inference problem.
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W Heuristics From Debiased Lasso

For any fixed A > 0, the Lasso solution (on the complete-case data) is a
biased estimator of 3y € R%:

BERI

. 1L
B\ = arg min [Zn ;Ri(yi - X B+ )‘|5||1] :

» Question: How can we correct for the bias in 3y or m(x) = x73,?
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For any fixed A > 0, the Lasso solution (on the complete-case data) is a
biased estimator of 3y € R%:

~

NER
B\ = arg min [Zn ;Ri(yi - X/ B)* + )‘|5||1] :

BERI

» Question: How can we correct for the bias in 3y or m(x) = x73,?

Optimality /KKT condition reads

1« ~ . . ~
SYORX (Y,- - XZ-TﬁA> — X2 with 2€d ‘ ’BAHl erR. (1)
i=1
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For any fixed A > 0, the Lasso solution (on the complete-case data) is a
biased estimator of 3y € R%:

BERI

. 1L
B\ = arg min [Zn ;Ri(yi - X B+ )‘|5||1] :

» Question: How can we correct for the bias in 3y or m(x) = x73,?

Optimality /KKT condition reads

1« ~ . . ~
SYORX (Y,- - XZ-TﬁA> — X2 with 2€d ‘ ’BAHl erR. (1)
i=1

Linearity assumption Y; = XiTﬁo + ¢ fori=1,...,nimplies that

1 - ~ U -~ 1<
=Y RXie+S (Bo - ﬁA) =X with =3 RXX].
i=1 i=1
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W Heuristics From Debiased Lasso

Given an approximation © € R4 to 5371, it becomes

B-mrox- é&@xiei + (85 -1) (BB

Asymptotically negligible bias

Stochastic error ~ N;(0,5)
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B-mrox- é&@xiei + (85 -1) (BB

Asymptotically negligible bias

Stochastic error ~ N;(0,5)
By KKT condition (1), the debiased Lasso estimate is thus given by
Bdebias _ B)\ + é \2
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W Heuristics From Debiased Lasso

Given an approximation © € R4 to 5371, it becomes

B-mrox- é&@xiei + (85 -1) (BB

Asymptotically negligible bias

Stochastic error ~ N;(0,5)

By KKT condition (1), the debiased Lasso estimate is thus given by
Bdebias _ B)\ + é \2

n
=By + % ;Riéxi (Yi - XzTB)\) .

A candidate debiased estimator for mg(x) = x' 3, is

~debi adebi 2 1 714 < 2
mdeb aS(x) — xTﬁdeb as _ XTB)\ + ExT@ ZlRle (Yl _ XlTﬁ)\) )
=
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w Heuristics From Debiased Lasso

o . ~ 1 n ~
mdeblas(x) — xTﬁdeblas — xTﬂ,\ + EXTG ZRiXi (Yl _ XITﬁ)\) )
i=1

» Issue: Fitting the debiasing matrix 0 e R js computationally
inefficient; see, e.g., the nodewise regression (Meinshausen and
Biihlmann, 2006; van de Geer et al., 2014).
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o . ~ 1 n ~
mdeblas(x) — xTﬁdeblas — xTﬂ,\ + EXTG ZRiXi (Yl _ XlTﬁ)\) )
i=1

» Issue: Fitting the debiasing matrix 0 e R js computationally
inefficient; see, e.g., the nodewise regression (Meinshausen and
Biihlmann, 2006; van de Geer et al., 2014).

» Solution: Introduce the weight vector @ = (1, ..., w,)T € R" with
(Giessing and Wang, 2023)
1,TQ —
il\)i _ Wx @Xz Ri = 1,
0 R; =0,

fori=1,...,n so that our final debiased estimator becomes

A

. ~ 1 <&
~debias /.. .~ _ T :R: . _xT
A g @) = 25+ ; oiR; (Y; - x[B) @)
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o . ~ 1 n ~
mdeblas(x) — xTﬁdeblas — xTﬂ,\ + EXTG ZRiXi (Yl _ XlTﬁ)\) )
i=1

» Issue: Fitting the debiasing matrix 0 e R js computationally
inefficient; see, e.g., the nodewise regression (Meinshausen and
Biihlmann, 2006; van de Geer et al., 2014).

» Solution: Introduce the weight vector @ = (1, ..., w,)T € R" with
(Giessing and Wang, 2023)

1,79 —
il\)i _ Wx @Xz Ri = 1,
0 R; =0,

fori=1,...,n so that our final debiased estimator becomes

A

. ~ 1 <&
~debias /.. .~ _ T :R: . _xT
A g @) = 25+ ; oiR; (Y; - x[B) @)

» Question: How do we estimate the weight vector w = (wy, ..., W,)!?
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w Optimize Over the Conditional Mean Square Error

Consider the generic debiased estimator m¢"@s (x; w) from (2) as:

mdebiaS(x; w) — xTﬂ + \}ﬁ ; wiR; (Yi - XzTﬁ) ! (3)
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w Optimize Over the Conditional Mean Square Error

Consider the generic debiased estimator m¢"@s (x; w) from (2) as:

mdebias (x: gy = T8 4+ — ZwR — X[ 5). 3)

The conditional mean squared error of /1 m9e®3(x; w) is given by

E {(\/ﬁmdebias(x;w) — \/ﬁmo(x))z ’Xl, ...,X,,}

i 1 & , P 2
— Uggw?ﬂ(xi) +{<\/ﬁ;wzﬁ(xi>x[ﬁ'> \MUU‘)))}

Main Conditional Variance

Conditional Bias

+ (Bo — [Zw m(Xi) (1 = m(X)) XiX; | (Bo — B),

Asymptotically Negligible Conditional Variance

where 7(X) = P(R = 1|X) is the propensity score under MAR condition.
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W Optimize Over the Conditional Mean Square Error

E |:<\/ﬁmdebias(x; w) — \/ﬁmo(x))2 ‘Xh ...,X,,]

2

T
n 1 n
= oy win(Xi) + <ﬁzzt)fn<><,>xlvx Vi (B — B)
i=1 ]

i=1

Main Conditional Variance Conditional Bias

By Holder’s inequality, the “Conditional Bias” is upper bounded by

|

2
Vi 1B - f] |

l n
\ﬁ Z wim(X)X; — x
i=1

OO
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W Optimize Over the Conditional Mean Square Error

E |:<\/ﬁmdebias(x; w) — \/ﬁmo(x))2 ‘Xl, ...,X,,]

2

T
n 1 n
= oy win(Xi) + (ﬁzumwfx Vi (B — B)
i=1 ]

i=1

Main Conditional Variance Conditional Bias

By Holder’s inequality, the “Conditional Bias” is upper bounded by

|

We design our core debiasing program as:

2
Vi 1B - f] |

l n
\ﬁ Z wim(X)X; — x
i=1

o0

n

min » mw?  subject to
weR" < ]
1=

1 n R 7
xfﬁz;w,m.xi gz,
1=

oo
where v > 0 is a tuning parameter and 7; is a consistent estimate of

the propensity score 7(X;) fori =1, ...,n.
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A" Yl Proposed Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data

. 1 &
By = argmin {2” SORi(Y; — XTB? + A ||ﬁ||1} :
i=1

BeRA
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A" YA Proposed Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data
e 1 <
B = argmin { D_Ri(Yi = X[ B) + A ||ﬁ||1} :
ﬁERd 2n i=1

Obtain consistent propensity score estimates 7;,i = 1, ..., n by any
machine learning method based on {(X;,R;)}'_, € R? x {0,1}.
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B = argmin { D_Ri(Yi = X[ B) + A ||ﬁ||1} :
ﬁERd 2n i=1

Obtain consistent propensity score estimates 7;,i = 1, ..., n by any
machine learning method based on {(X;,R;)}'_, € R? x {0,1}.

Solve the debiasing program defined as:
< 7} :
n

n
min E %L-wf:
weRN |

i—

1 n
x——g w; -7 X;
\/ﬁizl it T i
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A" YA Proposed Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data
e 1 <
B = argmin { D_Ri(Yi = X[ B) + A ||ﬁ||1} :
ﬁERd 2n i=1

Obtain consistent propensity score estimates 7;,i = 1, ..., n by any
machine learning method based on {(X;,R;)}'_, € R? x {0,1}.

Solve the debiasing program defined as:
< 7} :
n

n
- ~ o2
i=1
1 n
~debias (.~ _ T2 © SR . _xTg
m (x;w) =x ﬁ+\/ﬁ§w,R, (Y, XZB>.

1 n
x——g w; -7 X;
\/ﬁizl it T i

Define the debiased estimator for m(x) as:

Yikun Zhang High-Dimensional Inference With Missing Outcomes 18/45



A" YA Proposed Debiasing Inference Procedure

Compute the Lasso pilot estimate By on the complete-case data
Bx = argmin { ZR = X[ B+ A ||ﬁ||1} :
Berd

Obtain consistent propensity score estimates 7;,i = 1, ..., n by any
machine learning method based on {(X;,R;)}!_, C R? x {0 1}.

Solve the debiasing program defined as:
< 7} :
n

n n
1
. ~_ ~
Adeblas(x ) — XT5+ § :IUR (Y XT5>

Define the debiased estimator for mo(x) as:

Construct the asymptotic (1 — T)—level confldence interval for my(x) as:

[Adebm( W)+ (1 - 7) Z 710 with ®(-) being the CDF of A/(0,1).
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A" YA Theory and Practice of Our Debiasing Program

There are two unanswered questions in our proposed debiasing
inference procedure:

How can we select the tuning parameter y > 0 for our debiasing
program?

n
. ~ ~ vy
min E 7r,-w1-2: X — — w,--7ri~Xi < —=
weR" - -

i=1 )

Why is the asymptotic (1 — 7)-level confidence interval for m(x)
valid?

— debias /... ~ 1.
[mdebm(x; W)+ ! (1 - g) “Ge | = > @@  with ®(-) being the CDF of (0, 1).
n
i=1

Yikun Zhang High-Dimensional Inference With Missing Outcomes 19/45




A" YA Theory and Practice of Our Debiasing Program

There are two unanswered questions in our proposed debiasing
inference procedure:

How can we select the tuning parameter y > 0 for our debiasing
program?

n 1 n ~

min E %iwl-z: X — — E w,--%lei < —=

weR" —1 \/ﬁ i—1 n
i= i=

oo

Why is the asymptotic (1 — 7)-level confidence interval for m(x)
valid?

— debias /... ~ 1.
[mdebm(x; W)+ ! (1 - g) “Ge | = > @@  with ®(-) being the CDF of (0, 1).
n
i=1

» Answer: The above two questions can be addressed by the dual
formulation/solution of our debiasing program!
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A" "8 Dual Formulation of Our Debiasing Program

The primal form of our debiasing program is a quadratic programming
problem with a box constraint:

n n
: - 1 ~
min E ﬂ'iw?: x——g w; -7 X; Sl
weR" = \/ﬁ P n

oo
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A" "8 Dual Formulation of Our Debiasing Program

The primal form of our debiasing program is a quadratic programming
problem with a box constraint:
< 7} .
n

n 1 n
. ~ 2 ~
min E Tw; X — — E w; - T X
welkt o Vit

Proposition (Proposition 1 in Zhang et al. 2023)

The dual form of our debiasing program is given by

1 ¢ TwT 12 T Y
?&5{4” z;m (Xid]" +x"0+ - |£||1} :
If the strong duality holds, we further have that

W = — Z\f XTE for i=1,..,n,

where @ € R" and £ € RY are the solutions to the primal and dual debiasing
program, respectively.
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AV YA Practical Implication of Our Dual Debiasing Program

The dual form of our debiasing program is an unconstrained quadratic
programming problem:

n

. 1 ~ TvTy2 T Y
min EZW[XJ] MR UL

=
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AV YA Practical Implication of Our Dual Debiasing Program

The dual form of our debiasing program is an unconstrained quadratic
programming problem:

n

. 1 ~ TvTy2 T Y
min EZW[XJ] MR UL

=

We can fine-tune v > 0 by cross-validation.

2.0 17T
H -=- min-CV rule
v 1.57 i 1SE rule
= i 1SE rule
£ 1.0y i --- min-feas rule
z i
S o054 |
a i
g i
o 0.01 1
g i
3 il
2 -0.51 1]
g it
< 41
-1.01
i

02 0.4 0.6 08 1.0
Tuning parameter y/n
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W Interpretations From Neyman Near-Orthogonalization

Consider the regression function m = m(x) € R as the main parameter
to be inferred and 3 € RY as the high-dimensional nuisance parameter.

Our generic debiased estimator m3 (x, w) solves the sample-based
estimating equation

1o~ debias debi T 1 ¢ T
= g Ee(Yi, Ry, Xy m™%, B) = m ™ (v w) —x” f—— E R (Yi—X;B) =0.
" ( m B)=m (x;w)—x B \/ﬁilw (Y Xﬂ) 0

i=1
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W Interpretations From Neyman Near-Orthogonalization

Consider the regression function m = m(x) € R as the main parameter
to be inferred and 3 € RY as the high-dimensional nuisance parameter.

Our generic debiased estimator m3 (x, w) solves the sample-based
estimating equation

1 debias debi T 1 ¢ T
= Eo(Yi, Ry, Xy m 7 B) = mO (xyw)—x f——= ) wiRi(Yi—X;B) =0.
: g ( ) (5 0) ="~ g ( 5)

The Neyman near-orthogonalization condition (Chernozhukov et al.,
2018) given X = (X, ..., X,)T € R"™ at (my, By) = (x" By, Bo) requires

E [711 ZEX(Yi,Ri,XHmOvﬁO) X| =0,
=1
o (1 ' 5
su —E| = = Y,-,Rl-,Xl-;m, X — < u 5
sup {8/3 2 = 8) ] (moﬁw} (60| < 7

where 7, is a properly shrinking neighborhood of 5y and §, = o(1).
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w Interpretations From Neyman Near-Orthogonalization

Both conditions in (4) hold true, because for any 5 € 7, and some
convex set B containing f, we have that

T
{ Z—E =Y, R, Xiym, B)IX |, a@} (B8 — fo)

n T
1
=|[x— = wi-m(X)Xi| (Bo—5)
2
“<lx— — Z wi -7 - Xi|| ||B—Bo]l; by Holder’s inequality
Vi .
< X [|B —foll; by the box constraint in our debiasing program

< S by setting T, = {,BEBCRd 1B = Bolly <

5 )
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W Interpretations From Neyman Near-Orthogonalization

Both conditions in (4) hold true, because for any 5 € 7, and some
convex set B containing f, we have that

T
{ Z—E =Y, R, Xiym, B)IX |, a@} (B8 — fo)

; T
1
= [x v ;wi -m(Xi)Xi| (Bo—B)
« S ” o Z w; - %i . Xi H/B — ﬁo”l by Hélder’s lnequahty
VS N
< 1 [|B —foll; by the box constraint in our debiasing program
J
< % by setting Ty = BCR':||g~ < Vil
NG y setting 7, {,@E C 1B = Boll; < ~

Our debiasing program optimizes the (estimated) variance among all
the estimators satisfying Neyman near-orthogonalization (4).
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W Interpretations From Neyman Near-Orthogonalization

Both conditions in (4) hold true, because for any 5 € 7, and some
convex set B containing f, we have that

T
{ Z—E =Y, R, Xiym, B)IX |, a@} (B8 — fo)

; T
1
= [x v ;wi -m(Xi)Xi| (Bo—B)
« S ” o Z w; - %i . Xi H/B — ﬁo”l by Hélder’s lnequahty
VS N
< 1 [|B —foll; by the box constraint in our debiasing program
J
< % by setting Ty = BCR':||g~ < Vil
NG y setting 7, {,@E C 1B = Boll; < ~

Our debiasing program optimizes the (estimated) variance among all
the estimators satisfying Neyman near-orthogonalization (4).

(4) also allows our debiasing program to de-correlate the Lasso pilot
regression from propensity score estimation and weight optimization.
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A" YA Theoretical Implication of Our Dual Debiasing Program

» Goal: Establish the asymptotic normality of our debiased estimator

N

—~ q ~ 7 1 - 70
mdeb1a5(x; w) _ xTﬂ + ﬁ ; w;R; (Yi - XzTﬂ)

Yikun Zhang High-Dimensional Inference With Missing Outcomes 25/45



A" YA Theoretical Implication of Our Dual Debiasing Program

» Goal: Establish the asymptotic normality of our debiased estimator
febias (0. ~ 51l N
mdebms(x; w) = xTﬂ + ﬁ ; w;R; (Yi — XlTﬂ) .

» Naive Attempt: Linearity assumption Y; = XiTﬂo +efori=1,...n
implies that
T

i [iebins (s ) — mo(x)] — zn:@iRiei + Vvn (B\— 50) ;
i=1

1 -
X — ﬁ;wi&xi

Not an i.i.d. sum!
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A" YA Theoretical Implication of Our Dual Debiasing Program

» Goal: Establish the asymptotic normality of our debiased estimator

—~ q ~ 7 1 - 70 B3
mdeb1a5(x; w) _ xTﬂ + ﬁ ; w;R; (Yi - XzTﬂ) .

» Naive Attempt: Linearity assumption Y; = XiTﬂo +efori=1,...n
implies that
(5 ﬂo)

ZwRX

n
\/ﬁ fﬁdebias(x; il\)) — mo(x)] = ZZTJZ'R,'GI‘
i=1
Not an i.i.d. sum!

» Solution: With the dual relation w; = -5 f XTE i=1,...,n, we obtain

n T
1 | s
X+ % i:E - R,X,X]T[:| \/ﬁ (BO — [‘3)

debias /. =~ 1 < ~
Vi [ s @) — mo(x)| = 5= 37 RieiX[ T+
i=1

1 n
=—— Z R;e; X 4o (x) + “Bias terms” .
2V i=1 op(1)

iid. sum!
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A" "l Regularity Conditions For the Asymptotic Theory

The covariate vector X € R? and the noise ¢ € R are sub-Gaussian.
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A" "l Regularity Conditions For the Asymptotic Theory

The covariate vector X € R? and the noise ¢ € R are sub-Gaussian.

There exists a constant kg > 0 such that

inf E[R(X™0)?] > wp with §1={xeR’:|lxl],=1}.

vesi—1
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A" "l Regularity Conditions For the Asymptotic Theory

The covariate vector X € R? and the noise ¢ € R are sub-Gaussian.

There exists a constant kg > 0 such that
inf E[R(XT0))] > k% with S = {x ER: [|x]], = 1}.
vesi-1

Given any n > 1 and § € (0,1), there exists v = r(n,6) > 0 such that

P<max |7?,'7’/Ti| >7’ﬂ-> <6 with ﬂi:W(Xi),iil,...,i’l.
1<i<n
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A" "l Regularity Conditions For the Asymptotic Theory

The covariate vector X € R? and the noise ¢ € R are sub-Gaussian.

There exists a constant kg > 0 such that

inf E[R(X™0)?] > wp with §1={xeR’:|lxl],=1}.

vesi—1

Given any n > 1 and § € (0,1), there exists v = r(n,6) > 0 such that

P<max |ﬁ,‘*’/Ti| >7’ﬂ-> <6 with ﬂi:W(Xi),iil,...,i’l.
1<i<n

Define the population dual program as:

min {i E[R(XT0)"] + xTE} ,

LeR?

whose exact solution is £o(x) = —2 [E (RXXT)] ! x. We assume that
the r¢-approximation £(x) to £(x) is sparse with r, € [0, 1], i.e.,

se(x) = ||| < mingn.d} with ) = argmin {|lully : ||« ~ @ ]> < re [lo@)ll} -
UERS
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AV " Consistency and Asymptotic Normality

Consistency of Lasso pilot estimate: If A\ < o4/ % with logd = o(n),

then HE—ﬁOHZ =Op (Rlﬁ stl;)gd)'

Consistency of the solution to the dual debiasing program: If r,

[Ixll, /logd _ [lxll,
KR n + ;-;,2

shrinks to 0 in a certain rate and % = - 7., then

o -t -0 (o FEEE 2 1o

RR n KR KR

Note: Under the same choice of v > 0, the strong duality holds.
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AV Y Consistency and Asymptotic Normality

Consistency of Lasso pilot estimate: If A < o % with logd = o(n),

oen [ - ]~ 0n (3255,

Consistency of the solution to the dual debiasing program: If r,

lixll,  [logd . lIx]l,
KR n + K’IZQ

shrinks to 0 in a certain rate and % = - 7., then

3 4
KR n KR KR

Wwem%m<lsmmw+“+”ww)

Note: Under the same choice of v > 0, the strong duality holds.
Theorem (Theorem 7 in Zhang et al. 2023)
ff (o B — o (), (PR e B8OD (1, 4 1) = o(1), and [, = O(1)
R

with smaxﬂ?{: {sg,5¢0(x)}, then
Vn [ﬁidebias(x; w) — mo(x)] 4N (0, af,,(x)) with o (x) = lim o2-x" [E (RXXT)] B x.

n—00

Yikun Zhang High-Dimensional Inference With Missing Outcomes 27/45



W Remarks on Our Theoretical Results

Vn
logd

Our growth requirement sy, = 0 ( ) on the sparsity level is a

standard and essentially necessary condition for asymptotic normality;
see Section 8.6 of Jankova and van de Geer (2018).
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W Remarks on Our Theoretical Results

Our growth requirement sp,ax = 0 ( i ) on the sparsity level is a

logd
standard and essentially necessary condition for asymptotic normality;
see Section 8.6 of Jankova and van de Geer (2018).

Given any dimension d > 0, the asymptotic variance of our debiased
estimator )
opa(x) =0cZ-x" [E(RXX")] x

attains the semi-parametric efficiency bound among all asymptotically
linear estimators under MAR outcomes (Miiller and Keilegom, 2012).
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W Remarks on Our Theoretical Results

Vn
logd

Our growth requirement sp,ax = 0 ( ) on the sparsity level is a

standard and essentially necessary condition for asymptotic normality;
see Section 8.6 of Jankova and van de Geer (2018).

Given any dimension d > 0, the asymptotic variance of our debiased
estimator )

oma(x) =02 x" [E(RXX")] " «x
attains the semi-parametric efficiency bound among all asymptotically

linear estimators under MAR outcomes (Miiller and Keilegom, 2012).

Proposition (Proposition 8 in Zhang et al. 2023)

If(ltlé:?z) [ 50(x) l;zg("d) =0(1), (1tg?{) [7’2 _1_1%\/%} =0(1), and

x|, = O(1), then

=0p(1).

n
S #a? — " [E(RXXT)] ' x
i=1
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LY Overfitting the Propensity Scores

Our theoretical results also provide insightful answers to the following
two questions:

Why don’t we need sample splitting or cross fitting?

Why can we estimate the propensity score by any machine learning
methods without worrying about the overfitting issue?

Yikun Zhang High-Dimensional Inference With Missing Outcomes 29/45



LY Overfitting the Propensity Scores

Our theoretical results also provide insightful answers to the following
two questions:

Why don’t we need sample splitting or cross fitting?

Why can we estimate the propensity score by any machine learning
methods without worrying about the overfitting issue?

» Answer: Our asymptotic normality result depends on the in-sample
estimation error r, of the propensity score; recall that

P(max ‘%1'—7'(1“ >1"ﬂ-> <6 with Wi:W(Xi),izl,...,Tl.
1<i<n

In other words, our debiased estimator performs even better when we
overfit the propensity scores 7(X;) = P(R; = 1|X;),i =1, ...,n.
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LY Overfitting the Propensity Scores

Our theoretical results also provide insightful answers to the following
two questions:

Why don’t we need sample splitting or cross fitting?

Why can we estimate the propensity score by any machine learning
methods without worrying about the overfitting issue?

» Answer: Our asymptotic normality result depends on the in-sample
estimation error r, of the propensity score; recall that

P(max ‘%1'—7'(1“ >1"ﬂ-> <6 with Wi:W(Xi),izl,...,Tl.
1<i<n

In other words, our debiased estimator performs even better when we
overfit the propensity scores 7(X;) = P(R; = 1|X;),i =1, ...,n.

This coincides with “benign overfitting” in linear regression or neural
networks (Bartlett et al., 2020; Li et al., 2021; Cao et al., 2022).
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w Experimental Setups and Evaluation Metrics

We compare our debiasing method with Li-penalized logistic regression
for the propensity score estimation with several existing methods:

“DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).
“DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

“Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).
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We compare our debiasing method with Li-penalized logistic regression
for the propensity score estimation with several existing methods:

“DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).
“DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

“Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

These methods to be compared are implemented on
Complete-case (CC) data {(X;, Yi,Ri = 1)}iLy;

Inverse probability weighted (IPW) data { ( \Xﬁ, Y"A‘ JRi = 1> } ;

Oracle fully observed data (X;, Y;) fori =1,...,n.
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W Experimental Setups and Evaluation Metrics

We compare our debiasing method with Li-penalized logistic regression
for the propensity score estimation with several existing methods:

“DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).
“DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

“Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

These methods to be compared are implemented on
Complete-case (CC) data {(X;, Yi,Ri = 1)}iLy;

Inverse probability weighted (IPW) data { ( \Xﬁ, Y"A‘ JRi = 1> } ;

Oracle fully observed data (X;, Y;) fori =1,...,n.

Evaluation metrics on 1000 Monte Carlo experiments include

T’r\ldebias(x) _ mo(x) ;

Average absolute bias |

Average coverage of the yielded 95% confidence intervals;

Average length of the yielded 95% confidence intervals.
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Simulation Results Under Gaussian Noises (I)

DL-Jav (CC) DLJav (CO __ 959 nominal level
DL-Jav (IPW) DL-Jav (IPW) "
DL-Jav (Oracle) DL-Jav (Oracle)
DLvdG (CO) . DL-vdG (CC){ =
DLVAG (IPW)

DL-vdG (IPW)

DL-vdG (Oracle) DL-vdG (Oracle)

Refit (CC) Refit (CC)
Refit (IPW) Refit (IPW) (|
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2 o8 og{ © 1sE
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Figure 2: Sparse 3 and sparse x® with X; ~ N3 (0,2%),i=1,...,n.
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Simulation Results Under Laplace(0,1/v/2) Noises
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Figure 3: Dense i° and sparse x® with X; ~ N;(0,%%),i =1,...,n.
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Simulation Results Under t,-Distributed Noises
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Flgure 4: Pseudo-dense BO and dense x® with X; ~ A;(0, *),i=1,...,n. Note that the

mean-zero t, distribution has infinite variance.
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A" YA Proposed Method With Nonparametric Propensity Scores

True propensity score model: P(R; = 1|X;) = @ (—4 + Zle Zik>,
where (Zj, ..., Zik) contains all polynomial combinations of the first
eight components X, ..., Xjs of X; € R1%% with degrees < 2.

Yikun Zhang High-Dimensional Inference With Missing Outcomes 35/45



A" YA Proposed Method With Nonparametric Propensity Scores

True propensity score model: P(R; = 1|X;) = @ (—4 + Zle Zik>,
where (Zj, ..., Zik) contains all polynomial combinations of the first
eight components X, ..., Xjs of X; € R1%% with degrees < 2.

Estimate the propensity scores 7(X;),i = 1, ..., n by the following
nonlinear/nonparametric machine learning methods:

Gaussian Naive Bayes (“NB”).

Random Forest (“RF”): 100 trees, bootstrapping samples, and the Gini
impurity.

Support Vector Machine (“SVM”): Gaussian radial basis function.

Neural Network (“NN”): Two hidden layers of size 80 x 50 and ReLU
h(x) = max{x, 0} as the activation function.
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A" YA Proposed Method With Nonparametric Propensity Scores

True propensity score model: P(R; = 1|X;) = @ (—4 + Zle Zik>,
where (Zj, ..., Zik) contains all polynomial combinations of the first
eight components X, ..., Xjs of X; € R1%% with degrees < 2.

Estimate the propensity scores 7(X;),i = 1, ..., n by the following
nonlinear/nonparametric machine learning methods:

Gaussian Naive Bayes (“NB”).

Random Forest (“RF”): 100 trees, bootstrapping samples, and the Gini
impurity.

Support Vector Machine (“SVM”): Gaussian radial basis function.

Neural Network (“NN”): Two hidden layers of size 80 x 50 and ReLU
h(x) = max{x, 0} as the activation function.

Include an extra evaluation metric as the average mean absolute error
(“Avg-MAE”) for the estimated propensity scores.
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W Simulation Results With Nonparametric Propensity Scores
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Figure 5: Sparse 3; and (weakly) dense x*).
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A" " Background on Stellar Mass Inference

Recall that some estimated stellar masses of the observed galaxies in
SDSS-1IV are missing in the most recent Firefly value-added catalog.
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» Scientific Questions:
How can we conduct valid inference on the (estimated) stellar mass based on
the spectroscopic and photometric properties?

Is it statistically significant that the stellar mass of a galaxy is negatively

correlated with its distance to the nearby cosmic filament structures?
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AV YA Study Design For Stellar Mass Inference

Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ~ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.
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AV YA Study Design For Stellar Mass Inference

Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ~ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

» Final Dataset: n = 1185 and d = 1409.

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



w Results on Stellar Mass Inference
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Left Panel: 95% confidence intervals by different debiasing methods
for the estimated stellar mass of a new galaxy.

Right Panel: 95% confidence intervals by different debiasing methods
for the estimated regression coefficient associated with the distance to
nearby cosmic filaments.
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W Conclusions

We develop an efficient debiasing method for conducting valid
inference on high-dimensional linear models with MAR outcomes.
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W Conclusions

We develop an efficient debiasing method for conducting valid
inference on high-dimensional linear models with MAR outcomes.

Its computational and statistical efficiencies follow from the dual
formulation.

Sample splitting and cross fitting are not required, and the nuisance
propensity score can be estimated by any machine learning method.

We provide interpretations to our debiasing method from the
viewpoints of bias-variance trade-off and Neyman
near-orthogonalization.

Comprehensive simulation studies and motivating applications
demonstrate the potential of our proposed debiasing method.
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A" YA Potential Application to Causal Inference (I)

The observable data in causal inference are
{(Y5, Ti, X))} C R % {0,1} x R,
T; € {0,1} is a binary treatment assignment indicator;

Y, =T;-Y(1)i+ (1 —T;) - Y(0); with Y(0), Y(1) as potential outcomes.

» Objective: Conduct valid inference on the regression function (or
conditional mean outcome) of the treatment group.

x{ Y (1),
Treatment Group : : '\‘
1 . v
i " BYIX, T = 1)
7 based on
Xi n
Control Group : {(Y (1), Xi)ta
X7

Figure 7: Naive approaches for inferring E(Y|X, T = 1).
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A" YA Potential Application to Causal Inference (I)

The observable data in causal inference are
{(Vi, T, X)hiy € R x {0,1} x RY.
T; € {0,1} is a binary treatment assignment indicator;
Y, =T;-Y(1);i + (1 —T;) - Y(0); with Y(0), Y(1) as potential outcomes.

» Objective: Conduct valid inference on the regression function (or
conditional mean outcome) of the treatment group.

x{ Y (1),
Treatment Group : : IS
XL Y (1): y
s il EY|IX, T=1)
X1 based on
241 :
Control Group . . {(Y(l)i’ T, XZ)}I’Lzl
X!

Figure 7: Our approach for inferring E(Y|X, T = 1), similar to the regression
adjustment in causal inference (Freedman, 2008; Negi and Wooldridge, 2021).
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A" Y Potential Application to Causal Inference (II)

Our debiasing method can be extended to valid inference on the linear
average conditional treatment effect (ACTE)

E[Y(1) - Y(0)[X]

with no unmeasured confounding and high-dimensional covariates.
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A" Y Potential Application to Causal Inference (II)

Our debiasing method can be extended to valid inference on the linear
average conditional treatment effect (ACTE)

E[Y(1) - Y(0)[X]

with no unmeasured confounding and high-dimensional covariates.

The modified debiasing program with tuning parameters 1, v, > 0is

arg min Z [ﬂ'; Wiy + 1 —=m)w ;(0)]

w(0),W(1) E]R"

s.t. < n and
n

1 < ~
X — ﬁ Zwi(o) (1 — 71',‘) Xl‘
i=1

oo

1 ~
x—ﬁgwiu) ~7Tl‘~X,‘

)

The extended debiased estimator becomes

~debias -~ =
e (x; Wy, (o))

=x (5(1) - ﬁ(o)) +— Z [wi(l) - T; (Yi - X,-Tg(l)) — Wiy - (1 = Ty) (Yi - X,-TB(O))] .

The efficiency theory for this modified procedure is worth studying!
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Thank you!

More details can be found in

[1] Y. Zhang, A. Giessing, and Y.-C. Chen. Efficient Inference on High-Dimensional Linear
Models with Missing Outcomes. arXiv preprint, 2023. https://arxiv.org/abs/2309.06429.

Python Package: Debias-Infer and R Package: DebiasInfer.
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AV Y8 Implementation Details of the Proposed Debiasing Method

Lasso pilot estimate: We adopt the scaled Lasso (Sun and Zhang,
2012) with its universal regularization parameter Ao = 4/ ZIOgd as the

initialization. Specifically, it iteratively updates BN, 5N, )\ via the
jointly convex optimization program:

BER! 0, >0 | 2M0¢ P

(B(XL ag(X)) = argmin l ZR (Y; - X75)* + =+ |ﬂ||1] :
Debiasing program: We solve the primal program by Python package
“CVXPY” (Diamond and Boyd, 2016; Agrawal et al., 2018) or R
package “CVXR” (Fu et al., 2020). For the dual program, we
formulate a coordinate descent algorithm (Wright, 2015) as:

83 (4 S 7 (S XX [100)] ) — )

)]« IS A

for j=1,...,d,

where 8= (u) = sign(u) - (u—12) . is the soft-thresholding operator.
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W One Standard Error (1SE) Rule For Model Selection

Suppose that we conduct a K-fold cross-validation on a candidate set
I' = {v, ..., ym} of the tuning parameter.

For each +; € I', we compute the cross-validated risk or error on each
fold of the data as:
CVk(%‘), k=1,,K

For each 7; € T, we calculate the standard error of CV1 (), ..., CVk(¥)
as:

SD(vi) = \/Var (CV1(), ..., CVk(%)), SE() = SD(%)/VK.
Let

K
CV(y) = % > CVi(y) and 7= argenrlin CV (7).
k=1 v

The 1SE rule (Breiman et al., 1984; Chen and Yang, 2021) selects
~mse € T with as the one with the smallest CV(«y) such that

CV(mse) = CV(H) + SE(¥).
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w One Standard Error (1SE) Rule For Model Selection

A

Region Defined by One
Standard Error Rule

Mean Prediction
Error

\

Figure 8: Illustration of the 1SE rule for selecting the model parameter.
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A"Vl Finger-of-God and Kaiser Effects

The galaxy distribution is distorted along the line of sight due to the
peculiar velocities of galaxies, i.e., the so-called finger-of-god (Jackson,
1972) and Kaiser (Kaiser, 1987) effects.

Figure 9: Redshift distortions along the line of sight (Kuchner et al., 2021).
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