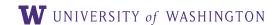
Nonparametric Inference on Dose-Response Curves Without the Positivity Condition

Yikun Zhang

Joint work with Professor Yen-Chi Chen

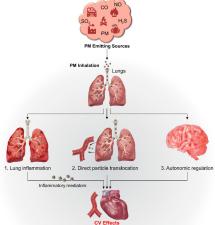
Department of Statistics, University of Washington

2025 Joint Statistical Meetings August 4, 2025



Motivation for Continuous Treatments

► We want to study the causal effects of PM_{2.5} levels on Cardiovascular Mortality Rates (CMRs).



Biological pathways associated with particulate matter (PM) and cardiovascular disease (Miller and Newby, 2020; Basith et al., 2022).

Motivation for Continuous Treatments

FIPS	County name	Longitude	Latitude	PM2.5	CMR
1025	Clarke	-87.830772	31.676955	6.766443	379.421713
1061	Geneva	-85.839330	31.094869	8.254272	378.524698
1073	Jefferson	-86.896571	33.554343	10.825441	352.790427
1077	Lauderdale	-87.654117	34.901500	9.208783	332.594557
5085	Lonoke	-91.887917	34.754412	8.213144	365.061085
8045	Garfield	-107.903621	39.599420	2.601772	250.781477

The dataset contains the average annual cardiovascular mortality rates (CMRs) and PM_{2.5} levels across n = 2132 U.S. counties from 1990 to 2010 (Wyatt et al., 2020a,b).

Motivation for Continuous Treatments

FIPS	County name	Longitude	Latitude	PM2.5	CMR
1025	Clarke	-87.830772	31.676955	6.766443	379.421713
1061	Geneva	-85.839330	31.094869	8.254272	378.524698
1073	Jefferson	-86.896571	33.554343	10.825441	352.790427
1077	Lauderdale	-87.654117	34.901500	9.208783	332.594557
5085	Lonoke	-91.887917	34.754412	8.213144	365.061085
8045	Garfield	-107.903621	39.599420	2.601772	250.781477

The dataset contains the average annual cardiovascular mortality rates (CMRs) and PM_{2.5} levels across n = 2132 U.S. counties from 1990 to 2010 (Wyatt et al., 2020a,b).

• The treatment variable T, *i.e.*, the $PM_{2.5}$ level at each county, is a quantitative measure. In other words, it is *not a binary but continuous variable*!

Causal Inference For Continuous Treatments

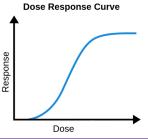
For *binary* treatment (*i.e.*, $T = \{0, 1\}$), common causal estimands are

- $\mathbb{E}[Y(t)]$ = mean counterfactual outcome when we set T = t.
- $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)] = \text{average treatment effect.}$
- ▶ **Question:** What are the counterparts of the above estimands under *continuous* treatment (*i.e.*, $\mathcal{T} \subset \mathbb{R}$)?

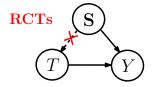
Causal Inference For Continuous Treatments

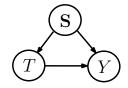
For *binary* treatment (*i.e.*, $T = \{0, 1\}$), common causal estimands are

- $\mathbb{E}[Y(t)]$ = mean counterfactual outcome when we set T = t.
- $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)]$ = average treatment effect.
- ▶ **Question:** What are the counterparts of the above estimands under *continuous* treatment (*i.e.*, $\mathcal{T} \subset \mathbb{R}$)?
- $t \mapsto m(t) := \mathbb{E}[Y(t)] = \text{(causal) dose-response curve.}$
- $t \mapsto \theta(t) := m'(t) = \frac{d}{dt} \mathbb{E}[Y(t)] = \text{(causal) derivative effect curve.}$



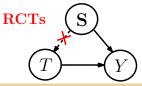
Standard Identification in Observational Studies

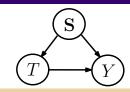




¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Standard Identification in Observational Studies



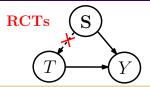


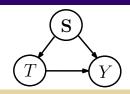
Assumption (Identification Conditions)

- **(Consistency)** Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (Positivity) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in \mathcal{T} \times \mathcal{S}$.

¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Standard Identification in Observational Studies





Assumption (Identification Conditions)

- **()** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- $ilde{D}$ (Ignorability) Y(t) is conditionally independent of T given S for all $t \in \mathcal{T}$.
- **(3)** (*Positivity*) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in \mathcal{T} \times \mathcal{S}$.

$$m(t) = \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\mathbb{E}(Y|T=t,S)\right] \quad \text{and} \quad \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] \stackrel{\text{(*)}^1}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}(Y|T=t,S)\right].$$

• The positivity condition is required for $\mu(t, s) = \mathbb{E}(Y|T=t, S=s)$ and $\frac{\partial}{\partial t}\mu(t, s) = \frac{\partial}{\partial t}\mathbb{E}(Y|T=t, S=s)$ to be well-defined on $\mathcal{T} \times \mathcal{S}$.

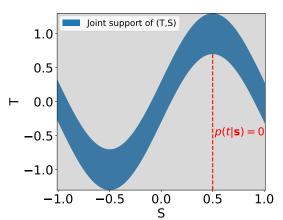
¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Violation of the Positivity Condition

Assumption (Positivity Condition)

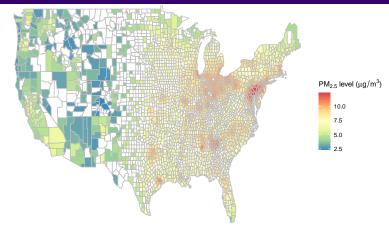
The conditional density p(t|s) is uniformly bounded away from zero for all $(t,s) \in \mathcal{T} \times \mathcal{S}$.

$$T = \sin(\pi S) + E$$
, $E \sim \text{Unif}[-0.3, 0.3]$, $S \sim \text{Unif}[-1, 1]$, and $E \perp \!\!\! \perp S$.



▶ Note: p(t|s) = 0 in the gray regions, and the positivity condition fails.

PM_{2.5} Distribution at the County Level



Average PM_{2.5} levels from 1990 to 2010 in n = 2132 counties.

- *T* is PM_{2.5} level, and *S* consists of the county location and socioeconomic factors.
- Only one or several PM_{2.5} levels are available per county in the dataset, and the positivity condition is violated!

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

- **10 Identification:** The positivity condition may fail in some regions of $\mathcal{T} \times \mathcal{S}$.
 - We propose a new identification strategy for m(t) and $\theta(t)$.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

- **10 Identification:** The positivity condition may fail in some regions of $\mathcal{T} \times \mathcal{S}$.
 - We propose a new identification strategy for m(t) and $\theta(t)$.
- **Estimation:** We derive a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$ based on our identification strategies.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

- **1. Identification:** The positivity condition may fail in some regions of $\mathcal{T} \times \mathcal{S}$.
 - We propose a new identification strategy for m(t) and $\theta(t)$.
- **Estimation:** We derive a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$ based on our identification strategies.
 - Identify and construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations $T_i, i = 1, ..., n$.
 - Extrapolate $\widehat{\theta}_{\mathcal{C}}(t)$ to any treatment level of interest via an integration.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

- **Output Identification:** The positivity condition may fail in some regions of $\mathcal{T} \times \mathcal{S}$.
 - We propose a new identification strategy for m(t) and $\theta(t)$.
- **Estimation:** We derive a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$ based on our identification strategies.
 - Identify and construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations $T_i, i = 1, ..., n$.
 - Extrapolate $\widehat{\theta}_{\mathcal{C}}(t)$ to any treatment level of interest via an integration.
 - Both $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$ are consistent in \mathcal{T} even when the positivity condition fails.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

- **① Identification:** The positivity condition may fail in some regions of $\mathcal{T} \times \mathcal{S}$.
 - We propose a new identification strategy for m(t) and $\theta(t)$.
- **Estimation:** We derive a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$ based on our identification strategies.
 - Identify and construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations $T_i, i = 1, ..., n$.
 - Extrapolate $\widehat{\theta}_C(t)$ to any treatment level of interest via an integration.
 - Both $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$ are consistent in \mathcal{T} even when the positivity condition fails.
- **Solution** Inference: Nonparametric bootstrap inference with our proposed estimators $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$ for m(t) and $\theta(t)$ is asymptotically valid.

Identification and Estimation

Why Do We Need Positivity?

Assumption (Identification Conditions)

- (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- (*Positivity*) $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in \mathcal{T} \times \mathcal{S}$.

The RA (or G-computation) formulae are given by

$$m(t) = \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\mu(t, \mathbf{S})\right] \quad \text{and} \quad \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, \mathbf{S})\right].$$

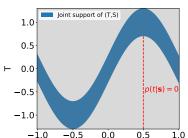
Why Do We Need Positivity?

Assumption (Identification Conditions)

- (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- (*Positivity*) $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in \mathcal{T} \times \mathcal{S}$.

The RA (or G-computation) formulae are given by

$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, \mathbf{S})]$$



$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, \mathbf{S})]$$
 and $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, \mathbf{S})\right]$.

▶ **Identification Issue:** Without positivity,

$$\mu(t, s) = \mathbb{E}\left(Y | T = t, S = s\right)$$

is *not well-defined* outside the support $\mathcal{E} \subset \mathcal{T} \times \mathcal{S}$ of the joint density p(t, s).

Key Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon$$
 with $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) > 0$. (1)

- $\bar{m}: \mathcal{T} \to \mathbb{R}, \eta: \mathcal{S} \to \mathbb{R}$ are unknown functions, while $\epsilon \in \mathbb{R}$ is exogenous.
- $m(t) = \mathbb{E}[Y(t)] = \bar{m}(t) + \mathbb{E}[\eta(S)]$ and $\theta(t) = m'(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \bar{m}'(t)$.

Key Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon$$
 with $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) > 0$. (1)

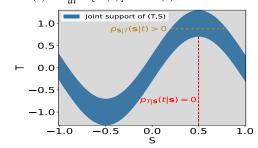
- $\bar{m}: \mathcal{T} \to \mathbb{R}, \eta: \mathcal{S} \to \mathbb{R}$ are unknown functions, while $\epsilon \in \mathbb{R}$ is exogenous.
- $m(t) = \mathbb{E}[Y(t)] = \bar{m}(t) + \mathbb{E}[\eta(S)]$ and $\theta(t) = m'(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \bar{m}'(t)$.

Proposition 2 in Zhang et al. (2024)

Under model (1) and consistency, we have

$$\theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\Big|T = t\right] := \theta_{C}(t)$$

and
$$\mathbb{E}(Y) = \mathbb{E}\left[\bar{m}(T) + \eta(S)\right] = \mathbb{E}\left[m(T)\right]$$
.



Key Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon$$
 with $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) > 0$. (1)

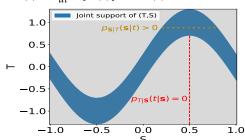
- $\bar{m}: \mathcal{T} \to \mathbb{R}, \eta: \mathcal{S} \to \mathbb{R}$ are unknown functions, while $\epsilon \in \mathbb{R}$ is exogenous.
- $m(t) = \mathbb{E}[Y(t)] = \bar{m}(t) + \mathbb{E}[\eta(S)]$ and $\theta(t) = m'(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \bar{m}'(t)$.

Proposition 2 in Zhang et al. (2024)

Under model (1) and consistency, we have

$$\theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\middle| T = t\right] := \theta_C(t)$$

and
$$\mathbb{E}(Y) = \mathbb{E}\left[\bar{m}(T) + \eta(S)\right] = \mathbb{E}\left[m(T)\right].$$



▶ **Identification of** m(t)**:** By the fundamental theorem of calculus,

$$m(t) = \mathbb{E}\left[Y + \int_{u=T}^{u=t} \theta_C(u) du\right] = \mathbb{E}(Y) + \mathbb{E}\left\{\int_{u=T}^{u=t} \mathbb{E}\left[\frac{\partial}{\partial t}\mu(T, S)\middle| T = u\right] du\right\} \text{ for any } t \in \mathcal{T}.$$

Yikun Zhang

Proposed Estimators of m(t) and $\theta(t)$

Recall our identification formulae

$$m(t) = \mathbb{E}\left[Y + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_C(\widetilde{t}) d\widetilde{t}\right]$$
 and $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t} \mu(t, S) \middle| T = t\right] = \int \frac{\partial}{\partial t} \mu(t, s) d\mathbf{P}(s|t).$

Proposed Estimators of m(t) and $\theta(t)$

Recall our identification formulae

$$m(t) = \mathbb{E}\left[Y + \int_{\widetilde{t}=T}^{t=t} \theta_{C}(\widetilde{t}) d\widetilde{t}\right] \quad \text{and} \quad \theta_{C}(t) = \mathbb{E}\left[\frac{\partial}{\partial t} \mu(t, S) \middle| T = t\right] = \int \frac{\partial}{\partial t} \mu(t, s) d\mathbf{P}(s|t).$$

Our **integral estimator** of m(t) is given by

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right],$$

and our **localized derivative** estimator of $\theta(t)$ is

$$\widehat{\theta}_{C}(t) = \int \widehat{\beta}_{2}(t, s) \, d\widehat{P}(s|t) = \frac{\sum_{i=1}^{n} \widehat{\beta}_{2}(t, S_{i}) \cdot \bar{K}_{T}\left(\frac{T_{i} - t}{\hbar}\right)}{\sum_{i=1}^{n} \bar{K}_{T}\left(\frac{T_{j} - t}{\hbar}\right)}.$$

- $\beta_2(t, s) := \frac{\partial}{\partial t} \mu(t, s)$ is fitted by the (partial) local polynomial regression.
- P(s|t) is estimated by the Nadaraya-Watson conditional cumulative distribution function (CDF) estimator.

Some Remarks on Proposed Estimators $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$

$$m(t) = \mathbb{E}\left[Y + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_C(\widetilde{t}) d\widetilde{t}\right]$$
 and $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t} \mu(t, S) \middle| T = t\right] = \int \frac{\partial}{\partial t} \mu(t, s) d\mathbf{P}(s|t).$

- ① Other methods can be applied to estimate $\frac{\partial}{\partial t}\mu(t,s)$ and P(s|t).
 - $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$, under our kernel-based estimators, are *linear smoothers*.

Some Remarks on Proposed Estimators $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{\mathcal{C}}(t)$

$$m(t) = \mathbb{E}\left[Y + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_{C}(\widetilde{t}) d\widetilde{t}\right] \quad \text{ and } \quad \theta_{C}(t) = \mathbb{E}\left[\frac{\partial}{\partial t} \mu(t, S) \middle| T = t\right] = \int \frac{\partial}{\partial t} \mu(t, s) d\mathbf{P}(s|t).$$

- ① Other methods can be applied to estimate $\frac{\partial}{\partial t}\mu(t,s)$ and P(s|t).
 - $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$, under our kernel-based estimators, are *linear smoothers*.
- Practically, the integral in $\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{u=T_i}^{u=t} \widehat{\theta}_{C}(u) \, du \right]$ could be analytically difficult to compute.
 - We propose a fast computing recipe via Riemann sum approximation.
 - The approximation error is at most $O_P(\frac{1}{n})$, which is asymptotically negligible.

Some Remarks on Proposed Estimators $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{\mathcal{C}}(t)$

$$m(t) = \mathbb{E}\left[Y + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta_{C}(\widetilde{t}) d\widetilde{t}\right] \quad \text{ and } \quad \theta_{C}(t) = \mathbb{E}\left[\frac{\partial}{\partial t} \mu(t, S) \middle| T = t\right] = \int \frac{\partial}{\partial t} \mu(t, s) d\mathbf{P}(s|t).$$

- **1** Other methods can be applied to estimate $\frac{\partial}{\partial t}\mu(t, s)$ and P(s|t).
 - $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$, under our kernel-based estimators, are *linear smoothers*.
- ② Practically, the integral in $\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{u=T_i}^{u=t} \widehat{\theta}_C(u) \, du \right]$ could be analytically difficult to compute.
 - We propose a fast computing recipe via Riemann sum approximation.
 - The approximation error is at most $O_P(\frac{1}{n})$, which is asymptotically negligible.
- **(Section 2)** We can construct (simultaneous) inference on m(t) and $\theta(t)$ with the proposed estimators $\widehat{m}_{\theta}(t)$ and $\widehat{\theta}_{C}(t)$ via *nonparametric bootstrap*.

Asymptotic Theory

Uniform Consistencies of Proposed Estimators

Combining the theory for local polynomial regression on $\widehat{\beta}_2(t,s)$ with the consistency of $\widehat{P}_{\hbar}(s|t)$ via the technique in Fan et al. (1998), we have the following results.

Theorem (Theorem 4 in Zhang et al. 2024)

Let
$$\mathcal{T}' \subset \mathcal{T}$$
 be a compact set so that $p_T(t) \geq p_{T,\min} > 0$ for all $t \in \mathcal{T}'$. When $q = 2$ and $h, b, \hbar, \frac{\max\{h, b\}^4}{h} \to 0$ and $\frac{n \max\{h, \hbar\} b^d}{\log n}, \frac{n\hbar}{\log n} \to \infty$,

$$\sup_{t \in \mathcal{T}'} \left| \widehat{\theta}_C(t) - \theta_C(t) \right| = \underbrace{O\left(h^2 + b^2 + \frac{\max\{b, h\}^4}{h}\right)}_{Bias\ term} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^3}} + \hbar^2 + \sqrt{\frac{\log n}{n\hbar}}\right)}_{Stochastic\ variation},$$

$$\sup_{t\in\mathcal{T}'}|\widehat{m}_{\theta}(t)-m(t)|=O\left(h^2+b^2+\frac{\max\{b,h\}^4}{h}\right)+O_P\left(\frac{1}{\sqrt{n}}+\sqrt{\frac{\log n}{nh^3}}+\hbar^2+\sqrt{\frac{\log n}{n\hbar}}\right).$$

Uniform Rate of Convergence For the Integral Estimator

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{n} \sum_{i=1}^{n} \int_{u=T_i}^{u=t} \widehat{\theta}_C(u) du \quad \text{and} \quad \widehat{\theta}_C(t) = \frac{\sum_{i=1}^{n} \widehat{\beta}_2(t, \mathbf{S}_i) \cdot \bar{K}_T\left(\frac{T_i - t}{\hbar}\right)}{\sum_{j=1}^{n} \bar{K}_T\left(\frac{T_j - t}{\hbar}\right)}.$$

$$\sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| = O\left(h^2 + b^2 + \frac{\max\{b, h\}^4}{h}\right) + O_P\left(\frac{1}{\sqrt{n}} + \sqrt{\frac{\log n}{nh^3}} + \hbar^2 + \sqrt{\frac{\log n}{n\hbar}}\right).$$

- Blue term: the estimation bias of local polynomial estimator $\widehat{\beta}_2(t,s)$.
- Orange term: additional bias of $\widehat{\beta}_2(t, s)$ at the boundary $\partial \mathcal{E}$.

Uniform Rate of Convergence For the Integral Estimator

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{n} \sum_{i=1}^{n} \int_{u=T_i}^{u=t} \widehat{\theta}_C(u) du \quad \text{and} \quad \widehat{\theta}_C(t) = \frac{\sum_{i=1}^{n} \widehat{\beta}_2(t, S_i) \cdot \bar{K}_T\left(\frac{T_i - t}{\hbar}\right)}{\sum_{j=1}^{n} \bar{K}_T\left(\frac{T_j - t}{\hbar}\right)}.$$

$$\sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| = O\left(h^2 + b^2 + \frac{\max\{b, h\}^4}{h}\right) + O_P\left(\frac{1}{\sqrt{n}} + \sqrt{\frac{\log n}{nh^3}} + \hbar^2 + \sqrt{\frac{\log n}{n\hbar}}\right).$$

- Blue term: the estimation bias of local polynomial estimator $\widehat{\beta}_2(t, s)$.
- Orange term: additional bias of $\widehat{\beta}_2(t, s)$ at the boundary $\partial \mathcal{E}$.
- Teal term: asymptotic rate from $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$.
- Red term: stochastic variation of $\widehat{\beta}_2(t, s)$.

Uniform Rate of Convergence For the Integral Estimator

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{n} \sum_{i=1}^{n} \int_{u=T_i}^{u=t} \widehat{\theta}_C(u) du \quad \text{and} \quad \widehat{\theta}_C(t) = \frac{\sum_{i=1}^{n} \widehat{\beta}_2(t, \mathbf{S}_i) \cdot \bar{K}_T\left(\frac{T_i - t}{\hbar}\right)}{\sum_{j=1}^{n} \bar{K}_T\left(\frac{T_j - t}{\hbar}\right)}.$$

$$\sup_{t\in\mathcal{T}'}|\widehat{m}_{\theta}(t)-m(t)|=O\left(h^2+b^2+\frac{\max\{b,h\}^4}{h}\right)+O_P\left(\frac{1}{\sqrt{n}}+\sqrt{\frac{\log n}{nh^3}}+\hbar^2+\sqrt{\frac{\log n}{n\hbar}}\right).$$

- Blue term: the estimation bias of local polynomial estimator $\widehat{\beta}_2(t,s)$.
- Orange term: additional bias of $\widehat{\beta}_2(t, s)$ at the boundary $\partial \mathcal{E}$.
- Teal term: asymptotic rate from $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$.
- Red term: stochastic variation of $\widehat{\beta}_2(t, s)$.
- Cyan term: asymptotic rate from the Nadaraya-Watson conditional CDF estimator $\hat{P}_{\hbar}(s|t)$.

Case Study: PM_{2.5} on CMR

PM_{2.5} and CMRs Data Recap

FIPS	County name	Longitude	Latitude	PM2.5	CMR
1025	Clarke	-87.830772	31.676955	6.766443	379.421713
1061	Geneva	-85.839330	31.094869	8.254272	378.524698
1073	Jefferson	-86.896571	33.554343	10.825441	352.790427
1077	Lauderdale	-87.654117	34.901500	9.208783	332.594557
5085	Lonoke	-91.887917	34.754412	8.213144	365.061085
8045	Garfield	-107.903621	39.599420	2.601772	250.781477

• The dataset (Wyatt et al., 2020a,b) contains the average annual CMRs (Y) and PM_{2.5} levels (T) across n = 2132 U.S. counties over 1990-2010.

PM_{2.5} and CMRs Data Recap

FIPS	County name	Longitude	Latitude	PM2.5	CMR
1025	Clarke	-87.830772	31.676955	6.766443	379.421713
1061	Geneva	-85.839330	31.094869	8.254272	378.524698
1073	Jefferson	-86.896571	33.554343	10.825441	352.790427
1077	Lauderdale	-87.654117	34.901500	9.208783	332.594557
5085	Lonoke	-91.887917	34.754412	8.213144	365.061085
8045	Garfield	-107.903621	39.599420	2.601772	250.781477

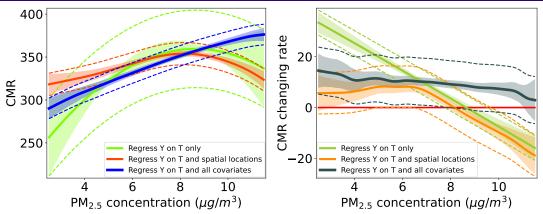
- The dataset (Wyatt et al., 2020a,b) contains the average annual CMRs (Y) and PM_{2.5} levels (T) across T = 2132 U.S. counties over 1990-2010.
- - 2 spatial confounders: latitude and longitude of each county.
 - 8 county-level socioeconomic factors acquired from the US census.

PM_{2.5} and CMRs Data Recap

FIPS	County name	Longitude	Latitude	PM2.5	CMR
1025	Clarke	-87.830772	31.676955	6.766443	379.421713
1061	Geneva	-85.839330	31.094869	8.254272	378.524698
1073	Jefferson	-86.896571	33.554343	10.825441	352.790427
1077	Lauderdale	-87.654117	34.901500	9.208783	332.594557
5085	Lonoke	-91.887917	34.754412	8.213144	365.061085
8045	Garfield	-107.903621	39.599420	2.601772	250.781477

- The dataset (Wyatt et al., 2020a,b) contains the average annual CMRs (Y) and PM_{2.5} levels (T) across n = 2132 U.S. counties over 1990-2010.
- ② The covariate vector $S \in \mathbb{R}^{10}$ consists of two parts:
 - 2 spatial confounders: latitude and longitude of each county.
 - 8 county-level socioeconomic factors acquired from the US census.
- § Focus on the values of PM_{2.5} between 2.5 μ g/ m^3 and 11.5 μ g/ m^3 to avoid boundary effects (Takatsu and Westling, 2022).

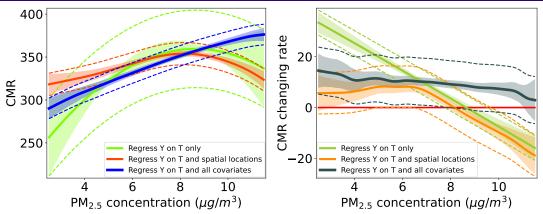
Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)



Shaded areas: 95% pointwise confidence intervals; **Regions between dashed lines:** 95% uniform confidence bands.

- We compare three models:
 - Regress *Y* on *T* alone via local quadratic regression.
 - Regress Y on T with spatial locations.
 - 3 Regress *Y* on *T* with both spatial and socioeconomic covariates.

Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)



Shaded areas: 95% pointwise confidence intervals; **Regions between dashed lines:** 95% uniform confidence bands.

- We compare three models:
 - Regress *Y* on *T* alone via local quadratic regression.
 - Regress Y on T with spatial locations.
 - **(**) Regress *Y* on *T* with both spatial and socioeconomic covariates.
 - For model 3, the increasing trends are **significant** when $PM_{2.5} < 8 \,\mu g/m^3$.

Discussion

Summary and Future Work

We study nonparametric inference on $m(t) = \mathbb{E}[Y(t)]$ and $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ without the **positivity** condition.

Our key techniques rely on two pillars in calculus:

$$\underbrace{\theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\middle| T = t\right]}_{\textbf{Differentiation}} \quad \text{and} \quad \underbrace{m(t) = \mathbb{E}\left[Y + \int_{u=T}^{u=t}\theta(u)\,du\right]}_{\textbf{Integration}}.$$

Summary and Future Work

We study nonparametric inference on $m(t) = \mathbb{E}[Y(t)]$ and $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ without the **positivity** condition.

Our key techniques rely on two pillars in calculus:

$$\underbrace{\theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t,S)\middle| T = t\right]}_{\textbf{Differentiation}} \quad \text{and} \quad \underbrace{m(t) = \mathbb{E}\left[Y + \int_{u=T}^{u=t}\theta(u)\,du\right]}_{\textbf{Integration}}.$$

- The plug-in regression adjustment estimators are consistent without positivity.
- Our integration idea opens a new direction for causal inference with continuous treatments under violations of positivity!

Summary and Future Work

We study nonparametric inference on $m(t) = \mathbb{E}[Y(t)]$ and $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ without the **positivity** condition.

Our key techniques rely on two pillars in calculus:

$$\underbrace{\theta(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\middle| T = t\right]}_{\textbf{Differentiation}} \quad \text{and} \quad \underbrace{m(t) = \mathbb{E}\left[Y + \int_{u = T}^{u = t}\theta(u)\,du\right]}_{\textbf{Integration}}.$$

- The plug-in regression adjustment estimators are consistent without positivity.
- Our integration idea opens a new direction for causal inference with continuous treatments under violations of positivity!
- **▶** Ongoing and Future Directions:
- Generalize our proposed estimators to inverse probability weighting and doubly robust forms (Zhang and Chen, 2025).
- Use additive models (Guo et al., 2019) to address the high-dimensional covariates.

Thank you!

More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response Curves Without the Positivity Condition. *arXiv* preprint, 2024. https://arxiv.org/abs/2405.09003.

All the code and data are available at https://github.com/zhangyk8/npDoseResponse/tree/main.

Python Package: npDoseResponse and R Package: npDoseResponse.

[2] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments. *arXiv preprint*, 2025. https://arxiv.org/abs/2501.06969.

Reference

- D. M. Bashtannyk and R. J. Hyndman. Bandwidth selection for kernel conditional density estimation. *Computational Statistics & Data Analysis*, 36(3):279–298, 2001.
- S. Basith, B. Manavalan, T. H. Shin, C. B. Park, W.-S. Lee, J. Kim, and G. Lee. The impact of fine particulate matter 2.5 on the cardiovascular system: a review of the invisible killer. *Nanomaterials*, 12(15):2656, 2022.
- J. E. Chacón, T. Duong, and M. Wand. Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, pages 807–840, 2011.
- Y.-C. Chen, C. R. Genovese, and L. Wasserman. A comprehensive approach to mode clustering. *Electronic Journal of Statistics*, 10(1):210 241, 2016.
- V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical processes. *The Annals of Statistics*, 42(4):1564–1597, 2014.
- K. Colangelo and Y.-Y. Lee. Double debiased machine learning nonparametric inference with continuous treatments. arXiv preprint arXiv:2004.03036, 2020.
- J. Fan and I. Gijbels. Local polynomial modelling and its applications, volume 66. Chapman & Hall/CRC, 1996.
- J. Fan, W. Härdle, and E. Mammen. Direct estimation of low-dimensional components in additive models. *The Annals of Statistics*, 26(3):943–971, 1998.
- B. Gilbert, A. Datta, J. A. Casey, and E. L. Ogburn. A causal inference framework for spatial confounding. arXiv preprint arXiv:2112.14946, 2023.
- R. D. Gill and J. M. Robins. Causal inference for complex longitudinal data: the continuous case. *Annals of Statistics*, 29(6):1785–1811, 2001.
- Z. Guo, W. Yuan, and C.-H. Zhang. Decorrelated local linear estimator: Inference for non-linear effects in high-dimensional additive models. *arXiv preprint arXiv:1907.12732*, 2019.

Reference

- P. Hall, R. C. Wolff, and Q. Yao. Methods for estimating a conditional distribution function. *Journal of the American Statistical Association*, 94(445):154–163, 1999.
- K. Hirano and G. W. Imbens. *The Propensity Score with Continuous Treatments*, chapter 7, pages 73–84. John Wiley & Sons, Ltd, 2004.
- E. H. Kennedy, Z. Ma, M. D. McHugh, and D. S. Small. Nonparametric methods for doubly robust estimation of continuous treatment effects. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 79(4):1229–1245, 2017.
- Q. Li and J. Racine. Cross-validated local linear nonparametric regression. Statistica Sinica, pages 485–512, 2004.
- M. R. Miller and D. E. Newby. Air pollution and cardiovascular disease: car sick. *Cardiovascular Research*, 116(2): 279–294, 2020.
- C. J. Paciorek. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. *Statistical Science*, 25(1):107–125, 2010.
- J. Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. *Mathematical modelling*, 7(9-12):1393–1512, 1986.
- P. Schnell and G. Papadogeorgou. Mitigating unobserved spatial confounding when estimating the effect of supermarket access on cardiovascular disease deaths. *Annals of Applied Statistics*, 14:2069–2095, 12 2020.
- J. Shao. Mathematical Statistics. Springer Science & Business Media, 2003.
- K. Takatsu and T. Westling. Debiased inference for a covariate-adjusted regression function. arXiv preprint arXiv:2210.06448, 2022.

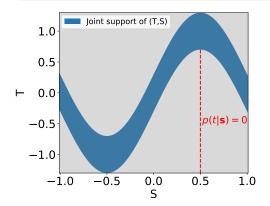
Reference

- L. H. Wyatt, G. C. Peterson, T. J. Wade, L. M. Neas, and A. G. Rappold. The contribution of improved air quality to reduced cardiovascular mortality: Declines in socioeconomic differences over time. *Environment international*, 136:105430, 2020a.
- L. H. Wyatt, G. C. L. Peterson, T. J. Wade, L. M. Neas, and A. G. Rappold. Annual pm2.5 and cardiovascular mortality rate data: Trends modified by county socioeconomic status in 2,132 us counties. *Data in Brief*, 30:105318, 2020b.
- L. Yang and R. Tschernig. Multivariate bandwidth selection for local linear regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 61(4):793–815, 1999.
- Y. Zhang and Y.-C. Chen. Doubly robust inference on causal derivative effects for continuous treatments. *arXiv* preprint arXiv:2501.06969, 2025.
- Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric inference on dose-response curves without the positivity condition. arXiv preprint arXiv:2405.09003, 2024.

Identification Strategy Without Positivity

Assumption (Identification Conditions)

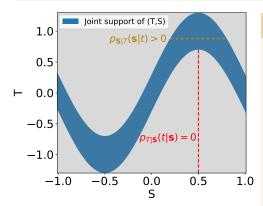
- **(** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (Treatment Variation) Var(T|S = s) > 0 for all $s \in S$.



Identification Strategy Without Positivity

Assumption (Identification Conditions)

- **(Consistency)** Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (Treatment Variation) Var(T|S = s) > 0 for all $s \in S$.



Assumption (Extrapolation; Zhang et al. 2024)

Assume $(t, s) \mapsto \mathbb{E}[Y(t)|S = s]$ to be differentiable w.r.to t for any $(t, s) \in \mathcal{T} \times \mathcal{S}$ with $p_{S|T}(s|t) > 0$ and

$$\begin{split} \theta(t) &= \frac{d}{dt} \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]\right] \\ &\stackrel{\star}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right] \middle| T = t\right]. \end{split}$$

Additionally, it holds true that $\mathbb{E}(Y) = \mathbb{E}[m(T)]$.

Estimation of Nuisance Functions

Order q (Partial) Local Polynomial Regression (Fan and Gijbels, 1996): Let $\widehat{\beta}(t,s) \in \mathbb{R}^{q+1}$ and $\widehat{\alpha}(t,s) \in \mathbb{R}^d$ be the minimizer of

$$\underset{(\boldsymbol{\beta},\boldsymbol{\alpha})^T \in \mathbb{R}^{q+1+d}}{\arg\min} \sum_{i=1}^n \left[Y_i - \sum_{j=0}^q \beta_j (T_i - t)^q - \sum_{\ell=1}^d \alpha_\ell (S_{i,\ell} - s_\ell) \right]^2 K_T \left(\frac{T_i - t}{h} \right) K_S \left(\frac{S_i - s}{b} \right).$$

- $K_T : \mathbb{R} \to [0, \infty), K_S : \mathbb{R}^d \to [0, \infty)$ are two symmetric kernel functions, and h, b > 0 are smoothing bandwidth parameters.
- The second component $\widehat{\beta}_2(t, s)$ is a consistent estimator of $\beta_2(t, s) = \frac{\partial}{\partial t}\mu(t, s)$.
- Nadaraya-Watson conditional CDF Estimator (Hall et al., 1999):

$$\widehat{P}_{\hbar}(oldsymbol{s}|t) = rac{\sum_{i=1}^{n} \mathbb{1}_{\{oldsymbol{s}_i \leq oldsymbol{s}\}} \cdot ar{K}_T\left(rac{T_i - t}{\hbar}
ight)}{\sum_{i=1}^{n} ar{K}_T\left(rac{T_j - t}{\hbar}
ight)}.$$

• $\bar{K}_T : \mathbb{R} \to [0, \infty)$ is a kernel function and $\hbar > 0$ is its smoothing bandwidth parameter.

Fast Computing Algorithm for the Integral Estimator

Our integral estimator takes the form

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_C(\widetilde{t}) d\widetilde{t} \right].$$

- ▶ Riemann Sum Approximation: Let $T_{(1)} \le \cdots \le T_{(n)}$ be the order statistics of $T_1, ..., T_n$ and $\Delta_i = T_{(i+1)} T_{(i)}$ for i = 1, ..., n-1.
- Approximate $\widehat{m}_{\theta}(T_{(i)})$ for each j = 1, ..., n as:

$$\widehat{m}_{\theta}(T_{(j)}) \approx \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{n} \sum_{i=1}^{n-1} \Delta_i \Big[i \cdot \widehat{\theta}_{C}(T_{(i)}) \mathbb{1}_{\{i < j\}} - (n-i) \cdot \widehat{\theta}_{C}(T_{(i+1)}) \mathbb{1}_{\{i \ge j\}} \Big].$$

- Evaluate $\widehat{m}_{\theta}(t)$ at any $t \in [T_{(j)}, T_{(j+1)}]$ by a linear interpolation between $\widehat{m}_{\theta}(T_{(j)})$ and $\widehat{m}_{\theta}(T_{(j+1)})$.
- The approximation error is at most $O_P(\frac{1}{n})$, which is asymptotically negligible.

Nonparametric Bootstrap Inference

- **①** Compute $\widehat{m}_{\theta}(t)$ on the original data $\{(Y_i, T_i, S_i)\}_{i=1}^n$.
- ② Generate *B* bootstrap samples $\left\{ \left(Y_i^{*(b)}, T_i^{*(b)}, S_i^{*(b)} \right) \right\}_{i=1}^n$ by sampling with replacement and compute $\widehat{m}_{A}^{*(b)}(t)$ for each b = 1, ..., B.
- **Solution** Let $\alpha \in (0,1)$ be a pre-specified significance level.
 - For pointwise inference at $t_0 \in \mathcal{T}$, calculate the 1α quantile $\zeta_{1-\alpha}^*(t_0)$ of $\{D_1(t_0),...,D_B(t_0)\}$, where $D_b(t_0) = \left|\widehat{m}_{\theta}^{*(b)}(t_0) \widehat{m}_{\theta}(t_0)\right|$ for b = 1,...,B.
 - For uniform inference on m(t), compute the 1α quantile $\xi_{1-\alpha}^*$ of $\{D_{\sup,1},...,D_{\sup,B}\}$, where $D_{\sup,b} = \sup_{t \in \mathcal{T}} \left| \widehat{m}_{\theta}^{*(b)}(t) \widehat{m}_{\theta}(t) \right|$ for b = 1,...,B.
- ① Define the 1α confidence interval for $m(t_0)$ as:

$$\left[\widehat{m}_{\theta}(t_0) - \zeta_{1-\alpha}^*(t_0), \, \widehat{m}_{\theta}(t_0) + \zeta_{1-\alpha}^*(t_0)\right]$$

and the simultaneous $1 - \alpha$ confidence band for every $t \in \mathcal{T}$ as:

$$\left[\widehat{m}_{\theta}(t) - \xi_{1-\alpha}^*, \, \widehat{m}_{\theta}(t) + \xi_{1-\alpha}^*\right].$$

Regularity Assumptions (Smoothness Conditions)

Let $\mathcal{E} \subset \mathcal{T} \times \mathcal{S}$ be the support of p(t, s), \mathcal{E}° be the interior of \mathcal{E} , and $\partial \mathcal{E}$ be the boundary of \mathcal{E} .

- For any $(t,s) \in \mathcal{E}^{\circ}$, $\mu(t,s)$ is at least (q+1) times continuously differentiable with respect to t and at least four times continuously differentiable with respect to s. All these partial derivatives of $\mu(t,s)$ are continuous up to the boundary $\partial \mathcal{E}$. Furthermore, $\mu(t,s)$ and the partial derivatives are uniformly bounded on \mathcal{E} . Finally, there exist absolute constants $\sigma, A_0 > 0$ such that $\text{Var}(Y|T=t,S=s) = \sigma^2$ and $\mathbb{E}|Y|^4 < A_0 < \infty$ uniformly in \mathcal{E} .
- ② p(t,s) is bounded and at least twice continuously differentiable with bounded partial derivatives up to the second order on \mathcal{E}° . All these partial derivatives of p(t,s) are continuous up to the boundary $\partial \mathcal{E}$. Furthermore, \mathcal{E} is compact and p(t,s) is uniformly bounded away from 0 on \mathcal{E} . Finally, the marginal density $p_T(t)$ of T is non-degenerate, *i.e.*, its support \mathcal{T} has a nonempty interior.

Regularity Assumptions (Boundary Conditions)

③ There exists some constants $r_1, r_2 ∈ (0, 1)$ such that for any (t, s) ∈ E and all $δ ∈ (0, r_1]$, there is a point (t', s') ∈ E satisfying

$$\mathcal{B}((t',s'), r_2\delta) \subset \mathcal{B}((t,s), \delta) \cap \mathcal{E},$$

where

$$\mathcal{B}((t,s), r) = \left\{ (t_1, s_1) \in \mathbb{R}^{d+1} : ||(t_1 - t, s_1 - s)||_2 \le r \right\}$$

with $||\cdot||_2$ being the standard Euclidean norm.

- ① For any $(t, s) \in \partial \mathcal{E}$, the boundary of \mathcal{E} , it satisfies that $\frac{\partial}{\partial t} p(t, s) = \frac{\partial}{\partial s_j} p(t, s) = 0$ and $\frac{\partial^2}{\partial s_i^2} \mu(t, s) = 0$ for all j = 1, ..., d.
- ⑤ For any δ > 0, the Lebesgue measure of the set $\partial \mathcal{E} \oplus \delta$ satisfies $|\partial \mathcal{E} \oplus \delta| \le A_1 \cdot \delta$ for some absolute constant A_1 > 0, where

$$\partial \mathcal{E} \oplus \delta = \left\{ oldsymbol{z} \in \mathbb{R}^{d+1} : \inf_{oldsymbol{x} \in \partial \mathcal{E}} \left| \left| oldsymbol{z} - oldsymbol{x}
ight|
ight|_2 \leq \delta
ight\}.$$

Regularity Assumptions (Kernel Conditions)

⑥ $K_T : \mathbb{R} \to [0, \infty)$ and $K_S : \mathbb{R}^d \to [0, \infty)$ are compactly supported and Lispchitz continuous kernels such that $\int_{\mathbb{R}} K_T(t) \, dt = \int_{\mathbb{R}^d} K_S(s) \, ds = 1$, $K_T(t) = K_T(-t)$, and K_S is radially symmetric with $\int s \cdot K_S(s) ds = 0$. In addition, for all j = 1, 2, ..., and $\ell = 1, ..., d$,

$$\kappa_j^{(T)} := \int_{\mathbb{R}} u^j K_T(u) \, du < \infty, \quad \nu_j^{(T)} := \int_{\mathbb{R}} u^j K_T^2(u) \, du < \infty,$$

$$\kappa_{j,\ell}^{(S)} := \int_{\mathbb{R}^d} u^j_\ell K_S(u) \, du < \infty, \quad \text{and} \quad \nu_{j,k}^{(S)} := \int_{\mathbb{R}^d} u^j_\ell K_S^2(u) \, du < \infty.$$

Finally, both K_T and K_S are second-order kernels, *i.e.*, $\kappa_2^{(T)} > 0$ and $\kappa_{2,\ell}^{(S)} > 0$ for all $\ell = 1, ..., d$.

Let
$$\mathcal{K}_{q,d} = \left\{ (y, z) \mapsto \left(\frac{y-t}{h} \right)^{\ell} \left(\frac{z_i - s_i}{b} \right)^{k_1} \left(\frac{z_j - s_j}{b} \right)^{k_2} K_T \left(\frac{y-t}{h} \right) K_S \left(\frac{z-s}{b} \right) : (t, s) \in \mathcal{T} \times \mathcal{S}; i, j = 1, ..., d; \ell = 0, ..., 2q; k_1, k_2 = 0, 1; h, b > 0 \right\}$$
. It holds that $\mathcal{K}_{q,d}$ is a bounded VC-type class of measurable functions on \mathbb{R}^{d+1} .

Regularity Assumptions (Kernel Conditions)

- The function $\bar{K}_T: \mathbb{R} \to [0, \infty)$ is a second-order, Lipschitz continuous, and symmetric kernel with a compact support, i.e., $\int_{\mathbb{R}} \bar{K}_T(t) dt = 1$, $\bar{K}_T(t) = \bar{K}_T(-t)$, and $\int_{\mathbb{D}} t^2 \bar{K}_T(t) dt \in (0, \infty).$
- ① Let $\bar{\mathcal{K}} = \left\{ y \mapsto \bar{K}_T\left(\frac{y-t}{\hbar}\right) : t \in \mathcal{T}, \hbar > 0 \right\}$. It holds that $\bar{\mathcal{K}}$ is a bounded VC-type class of measurable functions on \mathbb{R} .

Recall that the class \mathcal{G} of measurable functions on \mathbb{R}^{d+1} is VC-type if there exist constants $A_2, v_2 > 0$ such that for any $0 < \epsilon < 1$,

$$\sup_{Q} N\left(\mathcal{G}, L_2(Q), \epsilon ||G||_{L_2(Q)}\right) \leq \left(\frac{A_2}{\epsilon}\right)^{\nu_2},$$

where $N\left(\mathcal{G}, L_2(Q), \epsilon ||G||_{L_2(Q)}\right)$ is the $\epsilon ||G||_{L_2(Q)}$ -covering number of the (semi-)metric space $\left(\mathcal{G},||\cdot||_{L_2(Q)}\right)$, Q is any probability measure on \mathbb{R}^{d+1} , G is an envelope function of \mathcal{G} , and $||G||_{L_2(O)}$ is defined as $\left[\int_{\mathbb{R}^{d+1}} [G(x)]^2 dQ(x)\right]^{\frac{1}{2}}$.

Asymptotic Linearity of Proposed Estimators

Lemma (Lemma 5 in Zhang et al. 2024)

Under the same regularity conditions, if $h \approx n^{-\frac{1}{\gamma}}$ and $\hbar \approx n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^5}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and $\frac{n \max\{h, \hbar\}b^d}{\log n}, \frac{h^3 \log n}{\hbar}, \frac{h^3 \log n}{\log n}, \frac{nh^3 \hbar^4}{\log n} \to \infty$ as $n \to \infty$, then for any $t \in \mathcal{T}'$,

$$\sqrt{nh^3} \left[\widehat{\theta}_C(t) - \theta(t) \right] = \mathbb{G}_n \bar{\varphi}_t + o_P(1), \quad \text{and} \quad \sqrt{nh^3} \left[\widehat{m}_\theta(t) - m(t) \right] = \mathbb{G}_n \varphi_t + o_P(1),$$

where

$$\bar{\varphi}_t(Y, T, S) = \frac{C_{K_T} \left[Y - \mu(T, S) \right]}{\sqrt{h} \cdot p_T(t)} \left(\frac{T - t}{h} \right) K_T \left(\frac{T - t}{h} \right)$$

and $\varphi_t(Y, T, S) = \mathbb{E}_{T_1} \left[\int_{T_1}^t \bar{\varphi}_{\tilde{t}}(Y, T, S) \, d\tilde{t} \right]$ with $\mathbb{G}_n = \sqrt{n} \, (\mathbb{P}_n - P)$, where $C_{K_T} > 0$ is a constant that only depends on K_T .

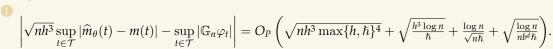
▶ **Note:** $\bar{\varphi}_t$ and φ_t are the IPW components of the *approximated* efficient influence functions.

Nonparametric Bootstrap Consistency

Theorem (Theorems 6 and 7 in Zhang et al. 2024)

Under the same regularity conditions, if $h \times n^{-\frac{1}{\gamma}}$ and $b \lesssim \hbar \times n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^{d+5}}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and

$$\frac{\hbar}{h^3\log n}, \hbar n^{\frac{1}{3}}\log n, \frac{\sqrt{n\hbar}}{\log n}, \frac{n\max\{h,\hbar\}b^d}{\log n} \to \infty \text{ as } n \to \infty,$$



 ${ t 2}$ there exists a mean-zero Gaussian process ${ t B}$ such that

$$\sup_{u \ge 0} \left| P\left(\sqrt{nh^3} \sup_{t \in \mathcal{T}} |\widehat{m}_{\theta}(t) - m(t)| \le u \right) - P\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| \le u \right) \right| = O\left(\left(\frac{\log^5 n}{nh^3} \right)^{\frac{1}{8}} + \left(\frac{\log^2 n}{nb^d \hbar} \right)^{\frac{3}{8}} \right).$$

$$\sup_{u \ge 0} \left| P\left(\sqrt{nh^3} \sup_{t \in \mathcal{T}} |\widehat{m}_{\theta}^*(t) - \widehat{m}_{\theta}(t)| \le u \Big| \mathbb{U}_n \right) - P\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| \le u \right) \right| = O_P\left(\left(\frac{\log^5 n}{nh^3} \right)^{\frac{1}{8}} + \left(\frac{\log^2 n}{nb^d \hbar} \right)^{\frac{3}{8}} \right),$$
where $\mathcal{F} = \{ (v, x, z) \mapsto \varphi_t(v, x, z) : t \in \mathcal{T} \}.$

Remarks on Our Asymptotic Results

- **①** \mathcal{F} is not Donsker because φ_t is not uniformly bounded as $h \to 0$.
 - However, $\widetilde{\mathcal{F}} = \left\{ (v, x, z) \mapsto \sqrt{h^3} \cdot \varphi_t(v, x, z) : t \in \mathcal{T}' \right\}$ is of VC-type.
 - Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the difference between $\sup_{f \in \mathcal{F}} |\mathbb{G}_n(f)|$ and $\sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$.
- ② As long as $Var(Y|T=t, S=s) \ge \sigma^2 > 0$, $Var[\varphi_t(Y, T, S)]$ is a positive finite number.
 - The asymptotic linearity (or V-statistic) is non-degenerate.
 - Pointwise bootstrap confidence intervals are asymptotically valid.
- § For the validity of uniform bootstrap confidence band, one can choose the bandwidths $h \approx \hbar = O\left(n^{-\frac{1}{5}}\right)$ and $\left(\frac{\log n}{n}\right)^{\frac{4}{5d}} \lesssim b \lesssim n^{-\frac{1}{5}}$.
 - These orders align with the outputs from the usual bandwidth selection methods (Bashtannyk and Hyndman, 2001; Li and Racine, 2004).
 - No explicit undersmoothing is required!!

Simulation Setup for Estimating m(t) and $\theta(t)$ Without Positivity

- Use the Epanechnikov kernel for K_T and K_S (with the product kernel technique) and Gaussian kernel for \bar{K}_T .
- Select the bandwidth parameters h, b > 0 by modifying the rule-of-thumb method in Yang and Tschernig (1999).
- Set the bandwidth parameter $\hbar > 0$ to the normal reference rule in Chacón et al. (2011); Chen et al. (2016).
- Set the bootstrap resampling time B = 1000 and the nominal level for confidence intervals or bands to 95%.
- Compare our proposed estimators with the regression adjustment estimators under the same choices of bandwidth parameters:

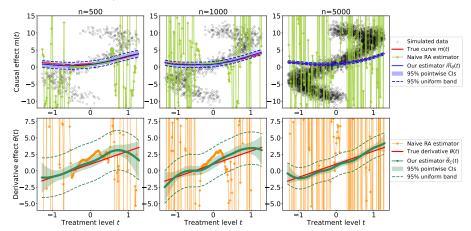
$$\widehat{m}_{RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, S_i)$$
 and $\widehat{\theta}_{RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}_2(t, S_i)$.

Single Confounder Model Without Positivity

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T^2 + T + 1 + 10S + \epsilon$$
, $T = \sin(\pi S) + E$, and $S \sim \text{Uniform}[-1, 1]$.

- $E \sim \text{Uniform}[-0.3, 0.3]$ is an independent treatment variation,
- $\epsilon \sim \mathcal{N}(0,1)$ is an exogenous normal noise.

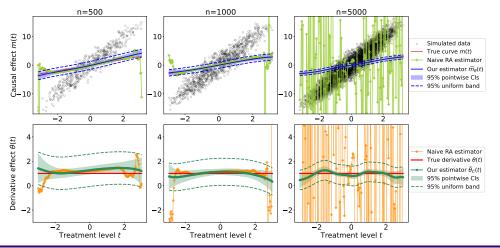


Linear Confounding Model Without Positivity

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T + 6S_1 + 6S_2 + \epsilon$$
, $T = 2S_1 + S_2 + E$, and $(S_1, S_2) \sim \text{Uniform}[-1, 1]^2$,

• $E \sim \text{Uniform}[-0.5, 0.5]$ and $\epsilon \sim \mathcal{N}(0, 1)$.

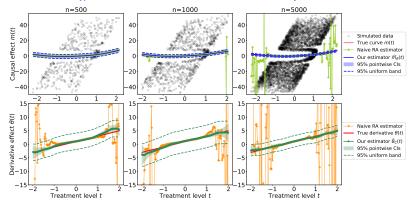


Nonlinear Confounding Model Without Positivity

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T^2 + T + 10Z + \epsilon$$
, $T = \cos(\pi Z^3) + \frac{Z}{4} + E$, and $Z = 4S_1 + S_2$,

- $(S_1, S_2) \sim \text{Uniform}[-1, 1]^2$, $E \sim \text{Uniform}[-0.1, 0.1]$, and $\epsilon \sim \mathcal{N}(0, 1)$.
- Those doubly robust methods based on pseudo-outcomes (Kennedy et al., 2017;
 Takatsu and Westling, 2022) do not work in this example.



Nonparametric Bound on m(t) When Var(E) = 0

For simplicity, we assume the additive confounding model

$$Y = \bar{m}(T) + \eta(S) + \epsilon$$
, $T = f(S) + E$ with $\mathbb{E}[\eta(S)] = 0$ and $\mathbb{E}(E) = 0$.

When Var(E) = 0,

• $\mu(t, s)$ can be identified only on a lower-dimensional surface $\{(t, s) \in \mathcal{T} \times \mathcal{S} : t = f(s)\}$ so that

$$\mu(f(s), s) = \bar{m}(f(s)) + \eta(s) = m(f(s)) + \eta(s).$$
 (2)

• The relation T = f(S) can be recovered from the data $\{(T_i, S_i)\}_{i=1}^n$.

Assumption (Bounded random effect)

Let $L_f(t) = \{ s \in \mathcal{S} : f(s) = t \}$ be a level set of the function $f : \mathcal{S} \to \mathbb{R}$ at $t \in \mathcal{T}$. There exists a constant $\rho_1 > 0$ such that

$$\rho_1 \geq \max \left\{ \sup_{t \in \mathcal{T}} \sup_{s \in L_t(t)} |\eta(s)|, \ \frac{\sup_{t \in \mathcal{T}} \sup_{s \in L_f(t)} \mu(f(s), s) - \inf_{t \in \mathcal{T}} \inf_{s \in L_f(t)} \mu(f(s), s)}{2} \right\}.$$

Nonparametric Bound on m(t) When Var(E) = 0

By (2) and the first lower bound on $\rho_1 \ge \sup_{t \in \mathcal{T}} \sup_{s \in L_f(t)} |\eta(s)|$ in the previous assumption,

we know that

$$|\mu(f(s),s) - m(t)| = |\eta(s)| \le \rho_1$$

for any $s \in L_f(t)$. It also implies that

$$\begin{split} m(t) &\in \bigcap_{\boldsymbol{s} \in L_f(t)} \left[\mu(f(\boldsymbol{s}), \boldsymbol{s}) - \rho_1, \, \mu(f(\boldsymbol{s}), \boldsymbol{s}) + \rho_1 \right] \\ &= \left[\sup_{\boldsymbol{s} \in L_f(t)} \mu(f(\boldsymbol{s}), \boldsymbol{s}) - \rho_1, \, \inf_{\boldsymbol{s} \in L_f(t)} \mu(f(\boldsymbol{s}), \boldsymbol{s}) + \rho_1 \right], \end{split}$$

which is the nonparametric bound on m(t) that contains all the possible values of m(t) for any fixed $t \in \mathcal{T}$ when Var(E) = 0.

• This bound is well-defined and nonempty under the second lower bound on ρ_1 in the previous assumption.