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In some real-world applications, observations are inherently directional
(or L2 normalized) in nature. Data of this type arise in:

• Astronomy: locations of galaxies or stars, measurements (such as
craters, lakes, etc.) on Earth or other planets.
• Seismology: epicenters of earthquakes.
• Biology: yeast gene expression analysis, studies of animal

navigation.
• Text mining: similarities between text documents are effectively

measured by cosine similarity.
• Geology, Meteorology, Electromagnetism,...

Challenge and Difficulty: Statistical models in the Euclidean space are
inadequate for analyzing such data, which are assumed to lie on a (unit)
hypersphere, a non-linear manifold.

Why Do We Study Directional Data?
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Typically, a directional dataset is assumed to be

X1, ...,Xn
i.i.d.∼ f ,

where f is a directional density supported on

Ωq :=
{

x ∈ Rq+1 : ||x||2 = 1
}

with
∫

Ωq
f (x)ωq(dx) = 1 and ||·||2 is the L2-norm in Rq+1. Here, ωq is the

Lebesgue measure on Ωq.

When q = 1, X1, ...,Xn ∈ Ω1 can also be represented by angles, e.g., in
[−π, π]. In this case, the (circular) density f is 2π-periodic and X1, ...,Xn
is called circular data.
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One of the most notable circular distributions is the so-called von Mises
distribution (or circular normal distribution), whose density is

fvM(θ;µ, ν) =
1

2πI0(κ)
exp [κ cos(θ − µ)] ,

where

• µ is the location parameter,
• κ is a measure of concentration ( 1

κ is analogous to σ2 in N (µ, σ2)),
• and Iα is the modified Bessel function of order α.

Figure: von Mises densities (cited from Wikipedia (2020))
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The preceding von Mises density can be generalized to the directional
density on Ωq. It becomes the von Mises-Fisher distribution, whose
density is given by:

fvMF(x;µ, κ) = Cq(κ) · exp
(
κµTx

)
with Cq(κ) =

κ
q−1

2

(2π)
q+1

2 I q−1
2

(κ)
.

It is related to the normal distribution in Rq+1 because

Nq+1

(
x;µ,

1
κ

Iq+1

)
∼
(√

κ

2π

)q+1

exp

(
−κ ||x− µ||2

2

)
∝ exp

(
κµTx

)
∝ fvMF(x;µ, κ),

using the fact that ||x− µ||2 = 2− 2µTx on Ωq.
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(a) fvMF,2(x;µ, ν) with µ = (0, 0, 1) and
ν = 4.0

(b)
2
5 · fvMF,2(x;µ1, ν1) + 3

5 · fvMF,2(x;µ2, ν2)
with µ1 = (0, 0, 1),µ2 = (1, 0, 0),

and ν1 = ν2 = 5.0

Figure: Contour plots of a 2-von Mises-Fisher density and a mixture of 2-vMF
densities

von Mises-Fisher Density and its Mixture
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Given a directional random sample X1, ...,Xn ∈ Ωq, the following
problems are often of research interest:

1 estimating the underlying directional density f (as well as its
derivatives), and

2 identifying the local modes of the (estimated) directional density on
Ωq.

Statistical Problems with Directional Data
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The first problem can be addressed by the directional kernel density
estimator (KDE), which is often written as (Hall et al., 1987; Bai et al.,
1988; García-Portugués, 2013):

f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1− xTXi

h2

)
, (1)

where X1, ...,Xn ∈ Ωq ⊂ Rq+1 are random directional observations, L is a
directional kernel (a rapidly decaying function with nonnegative values
on [0,∞)), h > 0 is the bandwidth parameter, and ch,q(L) is a
normalizing constant satisfying

ch,q(L)−1 =

∫
Ωq

L
(

1− xTy
h2

)
ωq(dy) = hqλh,q(L) � hqλq(L) (2)

with λq(L) = 2
q
2−1ωq−1

∫∞
0 L(r)r

q
2−1dr.

Density Estimation Problem on Ωq
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Using the von Mises kernel L(r) = e−r, the directional KDE

f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1−xTXi
h2

)
becomes a mixture of von Mises-Fisher

densities as follows:

f̂h(x) =
1
n

n∑
i=1

fvMF

(
x; Xi,

1
h2

)

=
1

n(2π)
q+1

2 I q−1
2

(1/h2)hq−1

n∑
i=1

exp

(
xTXi

h2

)
.
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The second problem is more challenging from two aspects:

1 How can we generalize the regular mean shift algorithm with
Euclidean KDEs (Cheng, 1995; Comaniciu and Meer, 2002) to the
directional data setting?

2 How can we conduct the gradient ascent procedure on Ωq?

(Note that the usual gradient ascent procedure x(t+1) ← x(t) + η · grad f (x(t))

is problematic on Ωq, because Ωq has a nonzero curvature and the
(Riemannian) gradient of f at x ∈ Ωq is defined on the tangent space Tx.
Moving along the gradient direction will deviate from Ωq.)

Tx

x

gradf(x)

The above two questions are related in our directional mean shift
algorithm!

Mode-Seeking Problem on Ωq
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In this talk, we will discuss both computational and statistical learning
theory of the mean shift algorithm with directional data.

• We will derive our directional mean shift algorithm.
• Ascending property:

{
f̂h (ŷs)

}
s=0,1,...

is monotonically increasing

along any mean shift path {ŷs}s=0,1,... on Ωq.
• Algorithmic Convergence: the mean shift path {ŷs}s=0,1,... converges

(linearly) to an estimated local mode m̂k if it is initialized in its small
neighborhood.

• We will formulate (Riemannian) gradient and Hessian estimators

from the directional KDE f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1−xTXi
h2

)
and prove

• Pointwise and uniform consistency of grad f̂h andH f̂h.
• Mode consistency: P

(
K̂n 6= K

)
and Haus

(
M,M̂n

)
can be arbitrarily

small when h is sufficiently small and n is sufficiently large.

Highlights of the Talk
Mean Shift and Learning Theory with Directional Data
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}

s=0,1,...
is monotonically increasing

along any mean shift path {ŷs}s=0,1,... on Ωq.
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(linearly) to an estimated local mode m̂k if it is initialized in its small
neighborhood.

• We will formulate (Riemannian) gradient and Hessian estimators

from the directional KDE f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1−xTXi
h2

)
and prove

• Pointwise and uniform consistency of grad f̂h andH f̂h.
• Mode consistency: P

(
K̂n 6= K

)
and Haus

(
M,M̂n

)
can be arbitrarily

small when h is sufficiently small and n is sufficiently large.

Highlights of the Talk
Mean Shift and Learning Theory with Directional Data

Yikun Zhang Directional Mean Shift 13/58



In this talk, we will discuss both computational and statistical learning
theory of the mean shift algorithm with directional data.
• We will derive our directional mean shift algorithm.

• Ascending property:
{

f̂h (ŷs)
}

s=0,1,...
is monotonically increasing

along any mean shift path {ŷs}s=0,1,... on Ωq.
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Mean Shift Algorithm with Directional
Data
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Definition (Tangent space of Ωq)

The tangent space of the sphere Ωq at x ∈ Ωq is given by

Tx ≡ Tx(Ωq) =
{

u− x ∈ Rq+1 : xT(u− x) = 0
}
'
{

v ∈ Rq+1 : xTv = 0
}
,

where V1 ' V2 signifies that the two vector spaces are isomorphic. In what
follows, v ∈ Tx indicates that v is a vector tangent to Ωq at x.

Definition (Geodesic)
A geodesic on Ωq is a non-constant, parametrized curve α : I→ Ωq of constant
speed and (locally) minimum length between two points on Ωq for some interval
I ⊂ R. It will be part of a great circle on Ωq.

Background Knowledge in Differential Geometry
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Assume that the function f is well-defined and smooth in Rq+1 \ {0} (or
at least in an open neighborhood U ⊃ Ωq).

Given a geodesic curve α : (−ε, ε)→ Ωq with α(0) = x and α′(0) = v, the
differential of f at point x ∈ Ωq (or total gradient; pushforward)
dfx : Tx → Tf (x)(R) ' R is given by

dfx(v) =
d
dt

f (α(t))
∣∣∣

t=0
= ∇f (α(t))Tα′(t)

∣∣∣
t=0

= ∇f (x)Tα′(0) = ∇f (x)Tv (3)

for any v ∈ Tx.

The Riemannian gradient grad f (x) ∈ Tx ⊂ Rq+1 is defined by

〈grad f (x), v〉 = [grad f (x)]T v = ∇f (x)Tv. (4)

Thus, using the fact that∇f (x) = Tang (∇f (x)) + Rad (∇f (x)), we conclude that

grad f (x) ≡ Tang (∇f (x)) =
(

Iq+1 − xxT
)
∇f (x).

Riemannian Gradient on Ωq
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grad f (x) ≡ Tang (∇f (x)) =
(

Iq+1 − xxT
)
∇f (x).
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Here,
Tang (∇f (x)) =

(
Iq+1 − xxT)∇f (x)

and
Rad (∇f (x)) = ∇f (x)−Tang (∇f (x)) = xxT∇f (x),

where Iq+1 is the identity matrix in R(q+1)×(q+1).

Tx

x

∇f(x)Rad (∇f(x))

Tang (∇f(x)) ≡ gradf(x)
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The Riemannian Hessian of f at x ∈ Ωq is a symmetric bilinear map
H f (x) : Tx × Tx → R defined as:

d2fx(v,u) = 〈grad 〈grad f ,v〉(x),u〉x = vTHf (x)u (5)

for any u,v ∈ Tx. It satisfies the property that

Hf (x) = (Iq+1 − xxT)Hf (x) = Hf (x)(Iq+1 − xxT). (6)

Using the same technique as the derivation of Riemannian gradients, we
can obtain the explicit form of the Riemannian Hessian of f at x ∈ Ωq as

Hf (x) = (Iq+1 − xxT)
[
∇∇f (x)−∇f (x)TxIq+1

]
(Iq+1 − xxT). (7)

This form coincides with the usual definition of Riemannian Hessians of
any smooth function f on (sub)manifolds (Absil et al., 2013).
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The KDE with Euclidean data in Rd is given by:

p̂n(x) =
1

nhd

n∑
i=1

K
(

x− Xi

h

)
=

ck,d

nhd

n∑
i=1

k

(∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
)
, (8)

where k is a rapidly decaying kernel profile on [0,∞), e.g., k(x) = e−
x
2 .

The gradient of p̂n(x) has the following decomposition:

∇p̂n(x) =
2ck,d

nhd+2

n∑
i=1

(x− Xi) · k′
(∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)

=
2ck,d

nhd+2

[
n∑

i=1

−k′
(∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)]
·


n∑

i=1
Xik′

(∣∣∣∣ x−Xi
h

∣∣∣∣2
2

)
n∑

i=1
k′
(∣∣∣∣ x−Xi

h

∣∣∣∣2
2

) − x

 .
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∇p̂n(x) =
2ck,d

nhd+2

[ n∑
i=1

−k′
(∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)]
︸ ︷︷ ︸

term 1


n∑

i=1
Xik′

(∣∣∣∣∣∣ x−Xi
h

∣∣∣∣∣∣2
2

)
n∑

i=1
k′
(∣∣∣∣∣∣ x−Xi

h

∣∣∣∣∣∣2
2

) − x


︸ ︷︷ ︸

term 2: mean shift vector

(9)

The “term 1” in (9) is proportional to the density estimate at x with the “kernel”
G(x) = −cg,dk′(||x||22) and is generally positive.

Thus, the mean shift vector in (9) points toward the direction of maximum increase in p̂n
and thus yields the following mean shift iteration, which is a valid mode-seeking
algorithm (Carreira-Perpiñán, 2015; Chen et al., 2016):

x(t+1) ← x(t) +

n∑
i=1

Xik′
(∣∣∣∣∣∣∣∣ x(t)−Xi

h

∣∣∣∣∣∣∣∣2
2

)
n∑

i=1
k′
(∣∣∣∣∣∣ x(t)−Xi

h

∣∣∣∣∣∣2
2

) − x(t)

=

n∑
i=1

Xik′
(∣∣∣∣∣∣∣∣ x(t)−Xi

h

∣∣∣∣∣∣∣∣2
2

)
n∑

i=1
k′
(∣∣∣∣∣∣ x(t)−Xi

h

∣∣∣∣∣∣2
2

) .
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Unfortunately, the total gradient of the directional KDE

f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1−xTXi
h2

)
does not have such a clear decomposition as

∇p̂n(x) in (9), because

∇f̂h(x) = −
ch,q(L)

nh2

n∑
i=1

XiL′
(

1− xTXi

h2

)
. (10)

Fortunately, we have an alternative representation of the directional
KDE as:

f̃h(x) =
ch,q(L)

n

n∑
i=1

L

(
1
2

∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)
. (11)

More importantly, f̂h(x) = f̃h(x) on Ωq, since 2− 2xTXi = ||x− Xi||22.
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The power of the expression f̃h(x) is that its total gradient has a similar
decomposition as ∇p̂n(x) (cf. (9)):

∇f̃h(x) =
ch,q(L)

nh2

n∑
i=1

(x− Xi) · L′
(

1
2

∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)

=
ch,q(L)

nh2

[ n∑
i=1

−L′
(

1
2

∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)]
︸ ︷︷ ︸

term 1

·


n∑

i=1
Xi · L′

(
1
2

∣∣∣∣∣∣ x−Xi
h

∣∣∣∣∣∣2
2

)
n∑

i=1
L′
(

1
2

∣∣∣∣∣∣ x−Xi
h

∣∣∣∣∣∣2
2

) − x


︸ ︷︷ ︸

term 2: mean shift vector

.
(12)

The “term 1” in (12) can be viewed as a proportional form of the
directional KDE at x with the “kernel” G(r) = −L′(r).
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The “term 2” in (12) is indeed the mean shift vector that is parallel to
∇f̃h(x):

Ξh(x) =

n∑
i=1

XiL′
(

1−xTXi
h2

)
n∑

i=1
L′
(

1−xTXi
h2

) − x. (13)

Since the total gradient∇f̃h(x) becomes the Riemannian gradient of
f̃h(x) = f̂h(x) on Ωq after being projected onto the tangent space Tx, the
mean shift Ξh(x) will point in the direction of maximum increase in
f̃h(x) = f̂h(x) after being projected onto Tx.
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The entire procedure goes as follows:
1 perform the mean shift iteration as

ŷs+1 ← Ξh (ŷs) + ŷs

for s = 0, 1, ....

However, due to the manifold structure of Ωq, translating a point ŷs ∈ Ωq
in its mean shift direction Ξh (ŷs) deviates the point from Ωq. Thus, we

2 project the translated point Ξh (ŷs) + ŷs back to Ωq by a simple
standardization Ξh(ŷs)+ŷs

||Ξh(ŷs)+ŷs||2
.
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Let {ŷs}s=0,1,... ⊂ Ωq denote the path of successive points defined by our
directional mean shift algorithm, where ŷ0 is the initial point of the
iteration.

When L is non-increasing (or more specifically,
n∑

i=1
L′
(

1−ŷT
s Xi

h2

)
< 0), some

simple algebra will show that the entire directional mean shift iteration
becomes

ŷs+1 =
Ξh (ŷs) + ŷs

||Ξh (ŷs) + ŷs||2
= −

n∑
i=1

XiL′
(

1−ŷT
s Xi

h2

)
∣∣∣∣∣∣∣∣ n∑

i=1
XiL′

(
1−ŷT

s Xi
h2

)∣∣∣∣∣∣∣∣
2

. (14)
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ŷs+1 =
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Recall that∇f̂h(x) = − ch,q(L)

nh2

n∑
i=1

XiL′
(

1−xTXi
h2

)
. Then the fixed-point

equation (14) can be expressed as:

ŷs+1 =
∇f̂h(ŷs)∣∣∣∣∣∣∇f̂h(ŷs)

∣∣∣∣∣∣
2

. (15)

m̂k

∇f̂h(m̂k)

ŷs

ŷs+1

{
z ∈ Ωq : zT m̂k > 1− ρ̂k

2

}
∇f̂h(ŷs)
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Let the directional density estimates along the mean shift iteration path
be

f̂h(ŷs) =
ch,q(L)

n

n∑
i=1

L
(

1− ŷT
s Xi

h2

)
for s = 0, 1, . . . .

Theorem (Theorem 8 in Zhang and Chen (2020))

If kernel L : [0,∞)→ [0,∞) is monotonically decreasing, differentiable, and
convex with L(0) <∞, then the sequence

{
f̂h(ŷs)

}
s=0,1,...

is monotonically

increasing and thus converges.

The von Mises kernel L(r) = e−r easily satisfies the above requirements.

Proof (Sketched)
It follows from the inequality L(x2)− L(x1) ≥ L′(x1) · (x2 − x1).
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The ascending property of
{

f̂h(ŷs)
}

s=0,1,...
under our directional mean

shift algorithm is not sufficient to ensure the convergence of the mode
estimate sequence {ŷs}s=0,1,... (Li et al., 2007; Aliyari Ghassabeh, 2013,
2015).

To derive the convergence of {ŷs}s=0,1,..., we make the following
assumptions on the directional KDE f̂h.

• (C1) The number of local modes of f̂h on Ωq is finite, and the modes
are isolated from other critical points.

• (C2) Given the current values of n and h > 0, we assume that

m̂T
k∇f̂h(m̂k) 6= 0 for all m̂k ∈ M̂n, that is,

n∑
i=1

m̂T
k XiL′

(
1−m̂T

k Xi
h2

)
6= 0.

Indeed, m̂T
k∇f̂h(m̂k)→∞ as h→ 0 and nhq →∞. More generally,∣∣∣∣∣∣∇f̂h(x)

∣∣∣∣∣∣
2
→∞ for any fixed x ∈ Ωq as h→ 0 and nhq →∞; see Lemma

10 in Zhang and Chen (2020).
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To derive the convergence of {ŷs}s=0,1,..., we make the following
assumptions on the directional KDE f̂h.

• (C1) The number of local modes of f̂h on Ωq is finite, and the modes
are isolated from other critical points.

• (C2) Given the current values of n and h > 0, we assume that

m̂T
k∇f̂h(m̂k) 6= 0 for all m̂k ∈ M̂n, that is,

n∑
i=1

m̂T
k XiL′

(
1−m̂T

k Xi
h2

)
6= 0.

Indeed, m̂T
k∇f̂h(m̂k)→∞ as h→ 0 and nhq →∞. More generally,∣∣∣∣∣∣∇f̂h(x)

∣∣∣∣∣∣
2
→∞ for any fixed x ∈ Ωq as h→ 0 and nhq →∞; see Lemma

10 in Zhang and Chen (2020).

Convergence of Directional Mean Shift

Yikun Zhang Directional Mean Shift 28/58



The ascending property of
{

f̂h(ŷs)
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estimate sequence {ŷs}s=0,1,... (Li et al., 2007; Aliyari Ghassabeh, 2013,
2015).
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Theorem (Theorem 11 in Zhang and Chen (2020))

Assume (C1) and (C2) and that kernel L is monotonically increasing,
continuously differentiable, convex with L(0) < 0.
Then, for each local mode m̂k ∈ M̂n, there exists a r̂k > 0 such that {ŷs}s=0,1,...
converges to m̂k whenever ||ŷ0 − m̂k||2 < r̂k and ŷ0 ∈ Ωq.
Moreover, under some regularity conditions (D1) and (D2’) stated in the
sequel, there exists a fixed constant r∗ > 0 such that P(̂rk ≥ r∗)→ 1 as h→ 0
and nhq →∞.

It states that when we initialize our directional mean shift algorithm
sufficiently close to an estimated local mode, it will converge to this
mode.
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Moreover, under some regularity conditions (D1) and (D2’) stated in the
sequel, there exists a fixed constant r∗ > 0 such that P(̂rk ≥ r∗)→ 1 as h→ 0
and nhq →∞.

It states that when we initialize our directional mean shift algorithm
sufficiently close to an estimated local mode, it will converge to this
mode.

Convergence of Directional Mean Shift

Yikun Zhang Directional Mean Shift 29/58



We simulate 1000 data points from the following density

f3(x) = 0.3 · fvMF(x;µ1, ν1) + 0.3 · fvMF(x;µ2, ν2) + 0.4 · fvMF(x;µ3, ν3)

with µ1 = [−120◦,−45◦], µ2 = [0◦, 60◦], µ3 = [150◦, 0◦], and ν1 = ν2 = 8, ν3 = 5.
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Statistical Learning Theory of
Directional KDE and its Derivatives

Yikun Zhang Directional Mean Shift 32/58



Recall that the total gradient of f̃h(x) =
ch,q(L)

n

n∑
i=1

L
(

1
2

∣∣∣∣ x−Xi
h

∣∣∣∣2
2

)
is

∇f̃h(x) =
ch,q(L)

nh2

n∑
i=1

(x− Xi) · L′
(

1
2

∣∣∣∣∣∣∣∣x− Xi

h

∣∣∣∣∣∣∣∣2
2

)
,

while the total gradient of f̂h(x) =
ch,q(L)

n

n∑
i=1

L
(

1−xTXi
h2

)
is

∇f̂h(x) = −
ch,q(L)

nh2

n∑
i=1

XiL′
(

1− xTXi

h2

)
.

They are indeed different on Ωq! However, their difference lies in the
radial direction x ∈ Ωq. Given kernel L, the Riemannian gradient
estimators derived from∇f̃h(x) and∇f̂h(x) are the same, i.e.,

grad f̂h(x) ≡ Tang
(
∇f̂h(x)

)
=

ch,q(L)

nh2

n∑
i=1

(
xTXi · x− Xi

)
· L′
(

1− xTXi

h2

)
= Tang

(
∇f̃h(x)

)
≡ grad f̃h(x).

(16)
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Recall equation (7) that the Riemannian Hessian of f at x ∈ Ωq is

Hf (x) = (Iq+1 − xxT)
[
∇∇f (x)−∇f (x)TxIq+1

]
(Iq+1 − xxT).

Therefore, the Riemannian Hessian estimator of directional KDE f̂h is
given by

H f̂h(x) = (Iq+1 − xxT)
[
∇∇f̂h(x)−∇f̂h(x)TxIq+1

]
(Iq+1 − xxT) (17)

and similarly forH f̃h(x).

Lemma (Lemma 1 in Zhang and Chen (2020))

Assume that kernel L is twice continuously differentiable. Then,

H f̃h(x) = H f̂h(x)

for any point x ∈ Ωq.
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We extend the underlying directional density f from Ωq to Rq+1 \ {0} by

defining f (x) ≡ f
(

x
||x||2

)
for all x ∈ Rq+1 \ {0}. We also assume that the

total gradient ∇f (x) =
(
∂f (x)
∂x1

, ...,
∂f (x)
∂xq+1

)T
and total Hessian matrix

∇∇f (x) =
(
∂2f (x)
∂xi∂xj

)
1≤i,j≤q+1

exist, and are continuous on Rq+1 \ {0} and

square integrable on Ωq.1 Consider the following assumptions:

• (D1) The extended density function f is at least three times
continuously differentiable and that the derivatives are square
integrable on Ωq.
• (D2) L : [0,∞)→ [0,∞) is a bounded and Riemann integrable

function such that

0 <
∫ ∞

0
Lk(r)r

q
2−1dr <∞ for all q ≥ 1 and k = 1, 2.

1Note that the Riemannian gradient and Hessian are invariant under this extension.
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• (D2’) Under (D2), we further assume that L is a twice continuously
differentiable function on (−δL,∞) ⊂ R for some constant δL > 0
such that

0 <
∫ ∞

0
L′(r)kr

q
2−1dr <∞, 0 <

∫ ∞
0

L′′(r)kr
q
2−1dr <∞

for all q ≥ 1 and k = 1, 2.

Assumptions (Continued)
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Under conditions (D1) and (D2), the convergence rate of f̂h is (Hall et al.,
1987; Zhao and Wu, 2001; García-Portugués, 2013; García-Portugués
et al., 2013)

f̂h(x)− f (x) = O(h2) + OP

(√
1

nhq

)
.

Moreover, Bai et al. (1988) improved the result to the uniform
convergence rate as:

‖f̂h − f‖∞ = O(h2) + OP

(√
log n
nhq

)
, (18)

where ‖g‖∞ = supx∈Ωq
|g(x)|.

Pointwise and Uniform Consistency of Directional KDE
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Theorem (Theorem 2 in Zhang and Chen (2020))

Assume conditions (D1) and (D2’). For any fixed x ∈ Ωq, we have

grad f̂h(x)− grad f (x) = O(h2) + OP

(√
1

nhq+2

)

as h→ 0 and nhq+2 →∞.
Under the same conditions, for any fixed x ∈ Ωq, we have

H f̂h(x)−H f (x) = O(h2) + OP

(√
1

nhq+4

)

as h→ 0 and nhq+4 →∞.

It demonstrates that the Riemannian gradient of a directional KDE f̂h is a
(pointwise) consistent estimator of the Riemannian gradient of the directional
density f that generates data. A similar result holds for the Hessian.
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Theorem (Theorem 4 in Zhang and Chen (2020))
Assume (D1), (D2’), and the kernel condition in Giné and Guillou (2002). The uniform
convergence rate of grad f̂h(x) on Ωq is

sup
x∈Ωq

∣∣∣∣∣∣grad f̂h(x)− grad f (x)
∣∣∣∣∣∣

max
= O(h2) + OP

(√
| log h|
nhq+2

)
,

as h→ 0 and nhq+2

| log h| →∞.

Furthermore, the uniform convergence rate ofH f̂h(x) on Ωq is

sup
x∈Ωq

∣∣∣∣∣∣H f̂h(x)−H f (x)
∣∣∣∣∣∣

max
= O(h2) + OP

(√
| log h|
nhq+4

)
,

as h→ 0 and nhq+4

| log h| →∞, where ||A||max is the elementwise maximum norm for a
matrix A ∈ R(q+1)×(q+1).
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The mean shift algorithm with directional data converges to an
estimated local mode m̂k if we initialize the algorithm with its small
neighborhood.

Question: how close the collection of estimated local modes
M̂n =

{
m̂1, ..., m̂K̂n

}
is to the collection of true local modes

M = {m1, ...,mK}?

Given two sets A,B ⊂ Ωq, their Hausdorff distance is

Haus(A,B) = inf {r > 0 : A ⊂ B⊕ r,B ⊂ A⊕ r} ,

where A⊕ r =

{
y ∈ Ωq : inf

x∈A
||x− y||2 ≤ r

}
=

{
y ∈ Ωq : sup

x∈A
xTy ≥ 1− r2

2

}
.
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Theorem (Theorem 6 in Zhang and Chen (2020))

Assume (D1), (D2’), the kernel condition in Giné and Guillou (2002), and
other regularity conditions (Chen et al., 2016; Zhang and Chen, 2020). For any
0 < δ < 1, when h is sufficiently small and n is sufficiently large,

1 there exist some constants A3,B3 > 0 such that

P
(

K̂n 6= K
)
≤ B3e−A3nhq+4

.

2 the Hausdorff distance between the collection of local modes and its
estimator satisfies

Haus
(
M,M̂n

)
= O(h2) + OP

(√
1

nhq+2

)
,

as h→ 0 and nhq+2 →∞.
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Computational Learning Theory of
Directional Mean Shift Algorithm
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We proved that the directional mean shift algorithm converges within a
small neighborhood of M̂n.

Question: how fast it converges?

We will show that our directional mean shift algorithm is a gradient
ascent algorithm on Ωq with an adaptive step size, which can be
sufficiently small when h is small, and thus can converge linearly.

Definition (Linear Convergence)

Given a sequence {ys}s=0,1,.. converging to mk ∈M, the convergence is
said to be linear if there exists a positive constant Υ < 1 (rate of
convergence) such that ||ys+1 −mk|| ≤ Υ||ys −mk||when s is sufficiently
large (Boyd and Vandenberghe, 2004).

Linear Convergence of Directional Mean Shift

Yikun Zhang Directional Mean Shift 43/58



We proved that the directional mean shift algorithm converges within a
small neighborhood of M̂n.

Question: how fast it converges?

We will show that our directional mean shift algorithm is a gradient
ascent algorithm on Ωq with an adaptive step size, which can be
sufficiently small when h is small, and thus can converge linearly.

Definition (Linear Convergence)

Given a sequence {ys}s=0,1,.. converging to mk ∈M, the convergence is
said to be linear if there exists a positive constant Υ < 1 (rate of
convergence) such that ||ys+1 −mk|| ≤ Υ||ys −mk||when s is sufficiently
large (Boyd and Vandenberghe, 2004).

Linear Convergence of Directional Mean Shift

Yikun Zhang Directional Mean Shift 43/58



However, Ωq is not a conventional Euclidean space but a Riemannian
manifold! Therefore, the gradient ascent update is different:

ys+1 = Expys
(η · grad f (ys)) , (19)

where η > 0 is the step size.

An exponential map at x ∈ Ωq is a mapping Expx : Tx → Ωq such that
vector v ∈ Tx is mapped to point y := Expx(v) ∈ Ωq with
γ(0) = x, γ(1) = y and γ′(0) = v, where γ : [0, 1]→ Ωq is a geodesic.
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We prove, under some regularity conditions, that (Theorem 12 in Zhang
and Chen (2020))

1 Linear convergence of gradient ascent with f : There exists an r0 > 0 such
that when the step size η > 0 is sufficiently small and the initial point
y0 ∈

{
z ∈ Ωq : ||z−mk||2 < r0

}
for some mk ∈M,

d(ys,mk) ≤ Υs · d(y0,mk) with Υ =

√
1− ηλ∗

2
,

where d(p, q) =
∣∣∣∣∣∣Exp−1

p (q)
∣∣∣∣∣∣

2
.

2 Linear convergence of gradient ascent with f̂h: let the gradient ascent
update on Ωq be

ŷs+1 = Expys

(
η · grad f̂h(ŷs)

)
.

When the step size η > 0 is sufficiently small and the initial point
ŷ0 ∈

{
z ∈ Ωq : ||z−mk||2 < r0

}
for some mk ∈M,

d (ŷs,mk) ≤ Υs · d (ŷ0,mk) + O(h2) + OP

(√
| log h|
nhq+2

)
with probability tending to 1, as h→ 0 and nhq+2

| log h| →∞.
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What is the adaptive step size of our directional mean shift algorithm
when viewed as a gradient ascent method on Ωq?

Recall that the one-step iteration of our directional mean shift is

ŷs+1 =
∇f̂h(ŷs)∣∣∣∣∣∣∇f̂h(ŷs)

∣∣∣∣∣∣
2

.

Then, the geodesic distance between ŷs+1 and ŷs is

arccos

 ∇f̂h(ŷs)
Tŷs∣∣∣∣∣∣∇f̂h(ŷs)
∣∣∣∣∣∣

2

 .
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If we want ŷs+1 = Expŷs

(
η̂s · grad f̂h(ŷs)

)
, then

∣∣∣∣∣∣η̂s · grad f̂h(ŷs)
∣∣∣∣∣∣

2
= arccos

 ∇f̂h(ŷs)
Tŷs∣∣∣∣∣∣∇f̂h(ŷs)
∣∣∣∣∣∣

2

 .

This shows that the adaptive step size is

η̂s = arccos

 ∇f̂h(ŷs)
Tŷs∣∣∣∣∣∣∇f̂h(ŷs)
∣∣∣∣∣∣

2

 · 1∣∣∣∣∣∣grad f̂h(ŷs)
∣∣∣∣∣∣

2

.
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∣∣∣∣∣∣

2

 .

This shows that the adaptive step size is

η̂s = arccos

 ∇f̂h(ŷs)
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Denote the angle between∇f̂h(ŷs) and ŷs by θ̂s. Then,

η̂s = arccos

 ∇f̂h(ŷs)
Tŷs∣∣∣∣∣∣∇f̂h(ŷs)
∣∣∣∣∣∣

2

 · 1∣∣∣∣∣∣grad f̂h(ŷs)
∣∣∣∣∣∣

2

=
θ̂s(

sin θ̂s

)
·
∣∣∣∣∣∣∇f̂h(ŷs)

∣∣∣∣∣∣
2

.

Tang

(
∇f̂h(ŷs)

)
≡ gradf̂h(ŷs)

ŷs

∇f̂h(ŷs)

θ̂s
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Recall that

η̂s =
θ̂s(

sin θ̂s

)
·
∣∣∣∣∣∣∇f̂h(ŷs)

∣∣∣∣∣∣
2

.

As our directional mean shift algorithm approaches a local mode of f̂h,
θ̂s → 0 and θ̂s

sin θ̂s
→ 1. Thus, η̂s is essentially controlled by

∣∣∣∣∣∣∇f̂h(ŷs)
∣∣∣∣∣∣

2
.

• The larger
∣∣∣∣∣∣∇f̂h(ŷs)

∣∣∣∣∣∣
2

at step s, the shorter the step size η̂s.

• Lemma 10 in Zhang and Chen (2020) shows that
∣∣∣∣∣∣∇f̂h(x)

∣∣∣∣∣∣
2
→∞

for any x ∈ Ωq as h→ 0 and nhq →∞.

Therefore, one can always select a small bandwidth parameter h such
that η̂s lies within the feasible range for linear convergence.
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∣∣∣∣∣∣

2
.

• The larger
∣∣∣∣∣∣∇f̂h(ŷs)
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∣∣∣∣∣∣
2

at step s, the shorter the step size η̂s.

• Lemma 10 in Zhang and Chen (2020) shows that
∣∣∣∣∣∣∇f̂h(x)

∣∣∣∣∣∣
2
→∞

for any x ∈ Ωq as h→ 0 and nhq →∞.

Therefore, one can always select a small bandwidth parameter h such
that η̂s lies within the feasible range for linear convergence.

Linear Convergence of Directional Mean Shift

Yikun Zhang Directional Mean Shift 49/58



Real-World Applications
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Earthquakes on Earth tend to occur more frequently in some regions
than others.

We analyzed earthquakes with magnitudes of 2.5+ occurring between
2020-08-21 00:00:00 UTC and 2020-09-21 23:59:59 UTC around the world.

The bandwidth parameter is selected via the rule of thumb in
Proposition 2 in García-Portugués (2013):

hROT =

 4π
1
2 I q−1

2
(ν̂)2

ν̂
q+1

2

[
2q · I q+1

2
(2ν̂) + (q + 2)ν̂ · I q+3

2
(2ν̂)

]
n

 1
q+4

(20)

and the tolerance level is ε = 10−7.

Earthquakes on Earth

Yikun Zhang Directional Mean Shift 51/58



Earthquakes on Earth tend to occur more frequently in some regions
than others.

We analyzed earthquakes with magnitudes of 2.5+ occurring between
2020-08-21 00:00:00 UTC and 2020-09-21 23:59:59 UTC around the world.

The bandwidth parameter is selected via the rule of thumb in
Proposition 2 in García-Portugués (2013):

hROT =

 4π
1
2 I q−1

2
(ν̂)2

ν̂
q+1

2

[
2q · I q+1

2
(2ν̂) + (q + 2)ν̂ · I q+3

2
(2ν̂)

]
n

 1
q+4

(20)

and the tolerance level is ε = 10−7.

Earthquakes on Earth

Yikun Zhang Directional Mean Shift 51/58



Earthquakes on Earth tend to occur more frequently in some regions
than others.

We analyzed earthquakes with magnitudes of 2.5+ occurring between
2020-08-21 00:00:00 UTC and 2020-09-21 23:59:59 UTC around the world.

The bandwidth parameter is selected via the rule of thumb in
Proposition 2 in García-Portugués (2013):

hROT =

 4π
1
2 I q−1

2
(ν̂)2

ν̂
q+1

2

[
2q · I q+1

2
(2ν̂) + (q + 2)ν̂ · I q+3

2
(2ν̂)

]
n

 1
q+4

(20)

and the tolerance level is ε = 10−7.

Earthquakes on Earth

Yikun Zhang Directional Mean Shift 51/58



180° 180°150°W120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E180° 180°
90°S

60°S

30°S

0°

30°N

60°N

90°S

60°S

30°S

0°

30°N

60°N

The earthquake modes are located near (from left to right and top to bottom) the Gulf of Alaska, the

west side of the Rocky Mountain in Nevada, the Caribbean Sea, the west side of the Andes mountains

in Chile, the Middle East, Indonesia, and Fiji.
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Figure: Mode clustering of Earthquakes on the world map
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Conclusion and Future Directions
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In this talk, we generalized the standard mean shift algorithm to
directional data, and developed statistical and computational learning
theory for it.

Possible future extensions of our work are:
1 Bandwidth Selection: Current studies on bandwidth selectors

primarily optimize the directional KDE itself. A well-designed
bandwidth selector for ∇f̂h will be needed.

2 Accelerated Directional Mean Shift: Our directional mean shift
algorithm would be slow on large datasets. One possible way to
accelerate it is to introduce the blurring procedures (Cheng, 1995;
Carreira-Perpiñán, 2006, 2008).

3 Connections to the EM Algorithm: The Gaussian mean shift
algorithm for Euclidean data is known to be an EM algorithm
(Carreira-Perpiñán, 2007). It is possible that our directional mean
shift with the von Mises kernel is an EM algorithm as well (Banerjee
et al., 2005).
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Thank you!
More details can be found in https://arxiv.org/abs/2010.13523.

The code for our experiments is available at
https://github.com/zhangyk8/DirMS.
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Any probability density function (pdf) p(x) on R can be “wrapped” into
a circular density as follows (e.g., page 52 in Mardia and Jupp (2000)):

pw(θ) =

∞∑
k=−∞

p(θ + 2πk),

where k is an integer and θ ∈ [−π, π]. For instance,
• wrapped normal distribution:

WN(θ;µ, σ) ∼ 1
σ
√

2π

∞∑
k=−∞

exp

[
− (θ − µ+ 2πk)2

2σ2

]
.

• wrapped Cauchy distribution:

WC(θ; θ0, γ) =

∞∑
n=−∞

γ

π [γ2 + (θ + 2πn− θ0)2]
=

1
2π

sinh γ

cosh γ − cos(θ − θ0)
,

where γ is the scale factor and θ0 is the peak position.

Other Examples of Circular Densities
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On the two-dimensional unit sphere Ω2, the pdf of the Kent distribution
is given by:

fKent(x) =
1

c(ν, β)
exp

{
νγT

1 x + β
[
(γT

2 x)2 − (γT
3 x)2]} ,

where the normalizing constant

c(ν, β) = 2π
∞∑

j=0

Γ
(
j + 1

2

)
Γ(j + 1)

β2j
(ν

2

)−2j− 1
2 I2j+ 1

2
(ν),

γj, j = 1, 2, 3 are orthonormal, and Γ(·) is the gamma function.
In Ωq, the Kent density is proportional to

fKent(x) ∝ exp

νγT
1 x +

q+1∑
j=2

βj(γ
T
j x)2

 .

Other Examples of Directional Densities
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Given a geodesic curve α : (−ε, ε)→ Ωq with α(0) = x and α′(0) = v,

vTHf (x)v =
d2

dt2 f (α(t))
∣∣∣
t=0

=
d
dt
[
∇f (α(t))Tα′(t)

] ∣∣∣
t=0

= α′(0)T∇∇f (α(0))α′(0) +∇f (α(0))Tα′′(0)

= vT∇∇f (x)v−∇f (x)Tx

= vT(∇∇f (x)−∇f (x)TxIq+1)v,

(21)

where we use the fact that α′′(0) = −x.

Detailed Derivation of Riemannian Hessian
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Proof (Sketched)
Tang

(
∇f̂h(x)

)
− Tang (∇f (x))

= E
[
Tang

(
∇f̂h(x)

)]
− Tang (∇f (x))︸ ︷︷ ︸

bias

+ Tang
(
∇f̂h(x)

)
− E

[
Tang

(
∇f̂h(x)

)]
︸ ︷︷ ︸

stochastic variation

and E
[
Tang

(
∇f̂h(x)

)]
=
(
Iq+1 − xxT)E [∇f̂h(x)

]
. Then

E
[
∇f̂h(x)

]
=

ch,q(L)

h2

∫
Ωq

(−y) · L′
(

1− xTy
h2

)
f (y)ωq(dy).

For a variable y ∈ Ωq and a fixed point x ∈ Ωq, we write t = xTy and

x = ty + (1− t2)
1
2 ξ,

where ξ ∈ Ωq is a unit vector orthogonal to y. Further, an area element on Ωq can be
written as

ωq(dx) = (1− t2)
q
2−1dtωq−1(dξ).

Sketched Proof of Pointwise Consistency
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Proof (Sketched)

E
[
∇f̂h(x)

]
=

ch,q(L)

h2

∫
Ωq

(−y)L′
(

1− xTy
h2

)
f (y)ωq(dy)

=
ch,q(L)

h2

∫ 1

−1

∫
Ωq−1

(
−tx−

√
1− t2Bxξ

)
L′
(

1− t
h2

)
× f
(
−tx−

√
1− t2Bxξ

)
(1− t2)

q
2−1ωq−1(dξ)dt

= ch,q(L)hq−2
∫ 2h−2

0

∫
Ωq−1

(−x− αx,ξ) · L′(r)

× f (x + αx,ξ) · r
q
2−1(2− h2r)

q
2−1ωq−1(dξ)dr,

where αx,ξ = −rh2x + h
√

r(2− h2r)Bxξ and Bx = (b1, ..., bq)(q+1)×q is the
semi-orthonormal matrix resulting from the completion of x to the orthonormal basis
{x, b1, ..., bq}.

Sketched Proof of Pointwise Consistency
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Let [τ ] = (τ1, ..., τq+1) be a multi-index (i.e., τ1, ..., τq+1 are non-negative integers and

|[τ ]| =
q+1∑
j=1

τj). Define D[τ ] = ∂τ1

∂x
τ1
1
· · · ∂

τq+1

∂x
τq+1
1

as the |[τ ]|-th order partial derivative

operator. Let

K =

{
u 7→ K

(
z− u

h

)
: u, z ∈ Ωq, h > 0,K(x) = D[r]L

(
1
2
||x||22

)
, |[τ ]| = 0, 1, 2

}
.

Under condition (D2’), K is a collection of bounded measurable functions on Ωq.
Consider the following assumption (Giné and Guillou, 2002):
• (K1) K is a bounded VC (subgraph) class of measurable functions on Ωq, that is,

there exist constants A, ν > 0 such that for any 0 < ε < 1,

sup
Q

N
(
K, L2(Q), ε||F||L2(Q)

)
≤
(

A
ε

)ν
,

where N(T, dT, ε) is the ε-covering number of the pseudometric space (T, dT), Q is
any probability measure on Ωq, and F is an envelope function of K. The constants A
and ν are usually called the VC characteristics of K and the norm ||F||L2(Q) is defined

as
[∫

Ωq
|F(x)|2dQ(x)

] 1
2 .

Regularity Conditions for Uniform Consistency
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Let C3 be the upper bound for the partial derivatives of the directional density f
on the compact manifold Ωq up to the third order.

Consider the following assumptions:
• (M1) There exists λ∗ > 0 such that

0 < λ∗ ≤ |λ1(mj)|, for all j = 1, ...,K,

where 0 > λ1(x) ≥ · · · ≥ λq(x) are the q smallest eigenvalues ofH f (x).
• (M2) There exists Θ1, ρ∗ > 0 such that{

x ∈ Ωq : ||Tang(∇f (x))||max ≤ Θ1, λ1(x) ≤ −λ∗
2
< 0
}
⊂M⊕ ρ∗,

where 0 < ρ∗ < min

{√
2− 2 cos

(
3λ∗
2C3

)
, 2
}

.

Assumptions for Mode Consistency
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Condition (M1) is a weak assumption that can be satisfied by the local
modes of common directional densities.
Recall that fvMF(x;µ, ν) = Cq(ν) · exp

(
νµTx

)
. Then,

∇fvMF(x) = νµCq(ν) · exp
(
νµTx

)
and

∇∇fvMF(x) = ν2µµTCq(ν) · exp
(
νµTx

)
,

which in turn indicates that at the mode µ ∈ Ωq,

H fvMF(µ) = −νCq(ν) · eν
(
Iq+1 − µµT) .

By Brauer’s theorem (Example 1.2.8 in Horn and Johnson (2012)), the
eigenvalues ofH fvMF(µ) are0,−νCq(ν) · eν , ...,−νCq(ν) · eν︸ ︷︷ ︸

q

 .

Assumptions for Mode Consistency
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Method (Scenario) # Est. Modes # Steps Avg. Err. of Est. Modes
DMS (One mode) 4.25 (1.670) 86.30 (48.774) –

BDMS (One mode) 11.95 (2.156) 17.10 (2.700) 0.074 (0.0492)
DMS (Two modes) 2.40 (0.490) 30.55 (5.757) –

BDMS (Two modes) 3.60 (1.114) 9.90 (1.868) 0.045 (0.0240)
DMS (Three modes) 3.00 (0.000) 28.65 (5.790) –

BDMS (Three modes) 3.10 (0.300) 7.75 (0.698) 0.034 (0.0090)

Table: Comparisons between Directional Mean Shift (DMS) and Blurring
Directional Mean Shift Algorithm (BDMS). The means and standard errors
(within round brackets) are calculated with 20 repeated experiments.

Some Results on Blurring Directional Mean Shift
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