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Goal: Study the causal effect of a treatment T 2 T on an outcome of interest Y 2 Y .

� E [Y(t)] = mean potential outcome under a static intervention T = t.

� When t varies in a continuous space, t 7! E [Y(t)] := m(t) is a curve!
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� While m(t1) = m(t2), the derivative effects m0(t1);m0(t2) are distinct!

� The derivative effect curve �(t) = m0(t) = d
dtE [Y(t)] is a continuous generalization

to the average treatment effect E [Y(1)]� E [Y(0)].

The Role of Derivatives in Causal Inference

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 2/28



Goal: Study the causal effect of a treatment T 2 T on an outcome of interest Y 2 Y .

� E [Y(t)] = mean potential outcome under a static intervention T = t.

� When t varies in a continuous space, t 7! E [Y(t)] := m(t) is a curve!

0 2 4 6
Treatment value T = t

0.0

0.1

0.2

0.3

0.4

m(t1) m(t2)

m(t) = [Y(t)]

� While m(t1) = m(t2), the derivative effects m0(t1);m0(t2) are distinct!

� The derivative effect curve �(t) = m0(t) = d
dtE [Y(t)] is a continuous generalization

to the average treatment effect E [Y(1)]� E [Y(0)].

The Role of Derivatives in Causal Inference

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 2/28



Goal: Study the causal effect of a treatment T 2 T on an outcome of interest Y 2 Y .

� E [Y(t)] = mean potential outcome under a static intervention T = t.

� When t varies in a continuous space, t 7! E [Y(t)] := m(t) is a curve!

0 2 4 6
Treatment value T = t

0.0

0.1

0.2

0.3

0.4

m(t1) m(t2)

m(t) = [Y(t)]

� While m(t1) = m(t2), the derivative effects m0(t1);m0(t2) are distinct!

� The derivative effect curve �(t) = m0(t) = d
dtE [Y(t)] is a continuous generalization

to the average treatment effect E [Y(1)]� E [Y(0)].

The Role of Derivatives in Causal Inference

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 2/28



Our causal estimand of interest is the derivative effect curve

t 7! �(t) = m0(t) =
d
dt
E [Y(t)] for t 2 T � R:

Problem: �(t) is non-regular and cannot be estimated in the rate 1=
p

n.

There are some closely related but distinct estimands:

� Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhäusler and Yu, 2019):

E [Y(T + �)]� E [Y(T)] for some deterministic � > 0:

� Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker, 1993):

E [�(T)] = E
�
@

@t
E (YjT;S)

�
; where S 2 S � Rd is a covariate vector:

Pros These estimands may have more realistic interpretations in the actual context.

Cons They quantify only the overall causal effects, not those at a specific level of interest.

Estimand of Interest and its Alternatives
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T Y

SRCTs

T Y

SObservational
Studies

Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability) Y(t) is conditionally independent of T given S for all t 2 T .

3 (Positivity) The conditional density satisfies pTjS(tjs) � pmin > 0 for all (t; s) 2 T � S .

�(t) =
d
dt
E [Y(t)]

(*)1

= E
�
@

@t
E(YjT = t;S)

�
:

� The positivity condition is required for @
@t�(t; s) = @

@tE (YjT = t;S = s) to be
well-defined on T � S.

1Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Identification Assumptions with Observational Data
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Assumption (Positivity Condition)

There exists a constant pmin > 0 such that pTjS(tjs) � pmin for all (t; s) 2 T � S .

▶ Positivity is a very strong assumption with continuous treatments!

T = sin(�S) + E; E � Uniform[�0:3; 0:3]; S � Uniform[�1; 1]; and E??S:

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

pT|S(t|s) = 0

Joint support of (T,S)

Note that pTjS(tjs) = 0 in the gray
regions, and the positivity condition fails.

An Example of the Positivity Violation
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t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Propose a doubly robust (DR) estimator of �(t) via kernel smoothing.

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR

Without the positivity condition:

2 m(t) and �(t) are identifiable with an additive structural assumption:

Y(t) = �m(t) + �(S) + �: (1)

3 The usual IPW estimators of m(t) and �(t) are still biased even under model (1).

4 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Highlights of Today’s Talk
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Nonparametric Inference on �(t)
Under Positivity
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability) Y(t) is conditionally independent of T given S for all t 2 T .

3 (Positivity) The conditional density satisfies pTjS(tjs) � pmin > 0 for all (t; s) 2 T � S .

Given that �(t; s) = E (YjT = t;S = s), we have

RA or G-computation:

8<:m(t) = E [Y(t)] = E [�(t;S)] ;

�(t) = d
dtE [Y(t)] = d

dtE [�(t;S)] = E
h
@
@t�(t;S)

i
:

IPW:

8<:m(t) = E [Y(t)] = lim
h!0

E
h

Y
pTjS(TjS) �

1
h K

�
T�t

h

�i
;

�(t) = d
dtE [Y(t)] = ???:

� K : R! [0;1) is a kernel function, e.g., K(u) =

8<:
1p
2�

exp
�
�u2

2

�
(Gaussian);

3
4(1� u2) � 1fjuj�1g (Parabolic):

� h > 0 is a smoothing bandwidth parameter.

Recap of the Identification Under Positivity
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Given the observed data f(Yi;Ti;Si)gn
i=1, there are three main strategies for estimating

m(t) = E [Y(t)] = E [�(t;S)] = lim
h!0

E

24 Y � K
�

T�t
h

�
h � pTjS(TjS)

35 :
1 RA Estimator (Robins, 1986; Gill and Robins, 2001):

bmRA(t) =
1
n

nX
i=1

b�(t;Si):

2 IPW Estimator (Hirano and Imbens, 2004; Imai and van Dyk, 2004):

bmIPW(t) =
1

nh

nX
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

� Yi:

3 DR Estimator (Kallus and Zhou, 2018; Colangelo and Lee, 2020):

bmDR(t) =
1

nh

nX
i=1

8<: K
�

Ti�t
h

�
bpTjS(TijSi)

� [Yi � b�(t;Si)] + h � b�(t;Si)

9=; :

Dose-Response Curve Estimation Under Positivity

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 9/28



To estimate �(t) = d
dtE [Y(t)] = E

h
@
@t�(t;S)

i
from f(Yi;Ti;Si)gn

i=1, we could also have
three strategies:

1 RA Estimator:

b�RA(t) =
1
n

nX
i=1

b�(t;Si) with �(t; s) =
@

@t
�(t; s):

Question: How can we generalize the IPW form m(t) = lim
h!0

E
�

Y�K( T�t
h )

h�pTjS(TjS)

�
to identify

and estimate �(t)?

2 IPW Estimator: Inspired by the derivative estimator in Mack and Müller (1989),
we propose

b�IPW(t) =
1
n

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

�
h2 � �2 � bpTjS(TijSi)

with �2 =

Z
u2 � K(u) du:

RA and IPW Estimators for �(t) Under Positivity
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Recall that bmDR(t) = 1
nh

nP
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

� [Yi � b�(t;Si)] +
1
n

nP
i=1

b�(t;Si).

b�RA(t) =
1
n

nX
i=1

b�(t;Si) “+” b�IPW(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

� Yi =)

b�DR(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

h
Yi � b�(t;Si)� (Ti � t) � b�(t;Si)

i
| {z }

New IPW component

+
1
n

nX
i=1

b�(t;Si)| {z }
RA component

:

The “New IPW component” leverages a local polynomial approximation to push the
residual of the IPW component to (roughly) second order.

� Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds for this
form of b�DR(t) as h ! 0.

Doubly Robust Estimator for �(t) Under Positivity
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Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and

1 b�; b�; bpTjS are estimated on a dataset independent of f(Yi;Ti;Si)gn
i=1;

2 at least one of the model specification conditions hold:

� bpTjS(tjs) P! �pTjS(tjs) = pTjS(tjs) (conditional density model),

� b�(t; s) P! ��(t; s) = �(t; s) and b�(t; s) P! ��(t; s) = �(t; s) (outcome model);

3 sup
ju�tj�h

����bpTjS(ujS)� pTjS(ujS)
����

L2

�
jjb�(t;S)� �(t;S)jjL2

+ h
������b�(t;S)� �(t;S)

������
L2

�
= oP

�
1p
nh

�
,

we prove that

� pnh3
hb�DR(t)� �(t)

i
= 1p

n

nP
i=1

�h;t

�
Yi;Ti;Si; ��; ��; �pTjS

�
+ oP(1).

� pnh3
hb�DR(t)� �(t)� h2B�(t)

i
d! N (0;V�(t)).

Asymptotic Properties of b�DR(t)
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3 sup
ju�tj�h

����bpTjS(ujS)� pTjS(ujS)
����

L2

�
jjb�(t;S)� �(t;S)jjL2

+ h
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�
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�
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nh

�
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An asymptotically valid inference on �(t) = d
dtE [Y(t)] can be conducted through

p
nh3

hb�DR(t)� �(t)� h2 B�(t)
i

d! N (0;V�(t)) :

1 We estimate V�(t) = E
h
�2

h;t

�
Y;T;S; ��; ��; �pTjS

�i
with

�h;t

�
Y;T;S; ��; ��; �pTjS

�
=

�
T�t

h

�
K
�

T�t
h

�
p

h � �2 � �pTjS(TjS)
� �Y� ��(t;S)� (T � t) � ��(t;S)

�
by bV�(t) = 1

n

nP
i=1

�2
h;t

�
Y;T;S; b�; b�; bpTjS

�
.

2 b�; b�; bpTjS can be estimated via sample-splitting or cross-fitting.

3 The explicit form of B�(t) is complicated, but h2 B�(t) is asymptotically negligible
when h = O

�
n�

1
5

�
.

� This order aligns with the outputs from usual bandwidth selection methods (Wand
and Jones, 1994; Wasserman, 2006).

Statistical Inference on �(t)
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Question:2 Do we have a nonparametric efficiency lower bound for b�DR(t)?

� t 7! �(t) := 	(P0)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

8t 2 T ; 9 fP� : � 2 Rg s.t. lim
�!0

	(P�)(t)�	(P0)(t)
�

does not exist:

� For a fixed h > 0, the smooth functional �(P0)(t) := E
�

Y�( T�t
h )K( T�t

h )
h2��2�pTjS(TjS)

�
is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

� Up to a shrinking bias O(h2), the efficient influence function for �(P0)(t) leads to

b�EIF(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):

▶ The asymptotic variances of b�DR(t) and b�EIF(t) are the same (or differing by O(h2))!

2I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for b�DR(t)

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 14/28



Question:2 Do we have a nonparametric efficiency lower bound for b�DR(t)?

� t 7! �(t) := 	(P0)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

8t 2 T ; 9 fP� : � 2 Rg s.t. lim
�!0

	(P�)(t)�	(P0)(t)
�

does not exist:

� For a fixed h > 0, the smooth functional �(P0)(t) := E
�

Y�( T�t
h )K( T�t

h )
h2��2�pTjS(TjS)

�
is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

� Up to a shrinking bias O(h2), the efficient influence function for �(P0)(t) leads to

b�EIF(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):

▶ The asymptotic variances of b�DR(t) and b�EIF(t) are the same (or differing by O(h2))!

2I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for b�DR(t)

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 14/28



Question:2 Do we have a nonparametric efficiency lower bound for b�DR(t)?

� t 7! �(t) := 	(P0)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

8t 2 T ; 9 fP� : � 2 Rg s.t. lim
�!0

	(P�)(t)�	(P0)(t)
�

does not exist:

� For a fixed h > 0, the smooth functional �(P0)(t) := E
�

Y�( T�t
h )K( T�t

h )
h2��2�pTjS(TjS)

�
is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

� Up to a shrinking bias O(h2), the efficient influence function for �(P0)(t) leads to

b�EIF(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):

▶ The asymptotic variances of b�DR(t) and b�EIF(t) are the same (or differing by O(h2))!

2I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for b�DR(t)

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 14/28



Question:2 Do we have a nonparametric efficiency lower bound for b�DR(t)?

� t 7! �(t) := 	(P0)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

8t 2 T ; 9 fP� : � 2 Rg s.t. lim
�!0

	(P�)(t)�	(P0)(t)
�

does not exist:

� For a fixed h > 0, the smooth functional �(P0)(t) := E
�

Y�( T�t
h )K( T�t

h )
h2��2�pTjS(TjS)

�
is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

� Up to a shrinking bias O(h2), the efficient influence function for �(P0)(t) leads to

b�EIF(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):

▶ The asymptotic variances of b�DR(t) and b�EIF(t) are the same (or differing by O(h2))!
2I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for b�DR(t)

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 14/28



Nonparametric Inference on �(t)
Without Positivity

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 15/28



Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability) Y(t) is conditionally independent of T given S for all t 2 T .

3 (Treatment Variation) Var(TjS = s) > 0 for all s 2 S.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

pT|S(t|s) = 0

Joint support of (T,S)

Assumption (Extrapolation; Zhang et al. 2024)

Assume (t; s) 7! E [Y(t)jS = s] to be differentiable
w.r.to t for any (t; s) 2 T � S with pSjT(sjt) > 0
and

�(t) =
d
dt
E [Y(t)] = E

�
@

@t
E [Y(t)jS]

�
?
= E

�
@

@t
E [Y(t)jS]

���T = t
�
:

Additionally, it holds true that E(Y) = E [m(T)].

Identification Strategy Without Positivity
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�(t) =
d
dt
E [Y(t)] = E

�
@

@t
E [Y(t)jS]

�
?
= E

�
@

@t
E [Y(t)jS]

���T = t
�
:

Proposition 2 in Zhang et al. (2024) shows that the above equality holds under an
additive structural assumption

Y(t) = �m(t) + �(S) + �:

� �m : T ! R and � : S ! R are deterministic functions.

� � 2 R is an independent noise variable with E(�) = 0 and Var(�) > 0.

� Identification:

m(t) = E
�
Y +

Z u=t

u=T
�(u) du

�
and �(t) =

Z
@

@t
�(t; s) dFSjT(sjt):

� RA estimators without positivity (Zhang et al., 2024):

bmC;RA(t) =
1
n

nX
i=1

"
Yi +

Z et=t

et=Ti

b�C;RA(et) det# and b�C;RA(t) =
Z b�(t; s) dbFSjT(sjt):

Key Example: Additive Confounding Model
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Question: How about IPW and DR estimators for �(t) without positivity?

� For identification, we assume Y(t) = �m(t) + �(S) + �.

� Recall the standard (oracle) IPW estimators for m(t) and �(t):

emIPW(t) =
1

nh

nX
i=1

Yi � K
�

Ti�t
h

�
pTjS(TijSi)

and e�IPW(t) =
1

nh2

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

�
�2 � pTjS(TijSi)

:

Proposition (Proposition 2 in Zhang and Chen 2025)

lim
h!0

E [emIPW(t)] = �m(t) � �(t) + !(t) 6= m(t); with �(t) = P (S 2 S(t)) ;

lim
h!0

E
he�IPW(t)

i
=

8<:�m0(t) � �(t)
1

6= �(t); and !(t) = E
h
�(S)1fS2S(t)g

i
:

▶ Key Issue: The conditional support S(t) of pSjT(sjt) and the marginal support S of
pS(s) are different under the violations of positivity!!

Estimation Biases of IPW Estimators Without Positivity
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Question: How can we find a �-interior conditional density p�(sjt)?

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

Lζ(t)

Level set approach

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

S(t)⊖ ζ

ζ

Support shrinking approach

S(t)	 � =

�
s 2 S(t) : inf

x2@S(t)
jjs� xjj2 � �

�
,

p�(sjt) =
pSjT(sjt) � 1fs2S(t)	�gR
S(t)	� pSjT(s1jt) ds1

:

L�(t) =
n

s 2 S(t) : pSjT(sjt) � �
o

,

p�(sjt) =
pSjT(sjt) � 1fs2L�(t)gR
L�(t) pSjT(s1jt) ds1

:

�-Interior Conditional Density
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▶ Bias-Corrected IPW Estimator Without Positivity:

b�C;IPW(t) =
1

nh2

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

� bp�(Sijt)
�2 � bp(Ti;Si)

;

� bp(t; s); bp�(sjt) are estimators of p(t; s); p�(sjt) and � = 0:5 �max
�bpSjT(Sijt) : i = 1; :::;n

	
.

▶ Bias-Corrected DR Estimator Without Positivity:

b�C;DR(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

� bp�(Sijt)
�2 � bp(Ti;Si)

h
Yi � b�(t;Si)� (Ti � t) � b�(t;Si)

i
| {z }

IPW component

+

Z b�(t; s) � bp�(sjt) ds| {z }
RA component

:

Bias-Corrected IPW and DR Estimators for �(t)
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Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and

1 b�; b�; bp; bp� are estimated on a dataset independent of f(Yi;Ti;Si)gn
i=1;

2
p

nh jjbp�(Sjt)� �p�(Sjt)jjL2
= oP(1) with bp�(sjt) P! �p�(sjt);

3 at least one of the model specification conditions hold:

� bp(t; s) P! �p(t; s) = p(t; s) (joint density model),

� b�(t; s) P! ��(t; s) = �(t; s) and b�(t; s) P! ��(t; s) = �(t; s) (outcome model);

4 sup
ju�tj�h

jjbp(u;S)� p(u;S)jjL2

�
jjb�(t;S)� �(t;S)jjL2

+ h
������b�(t;S)� �(t;S)

������
L2

�
= oP

�
1p
nh

�
,

we prove that

� pnh3
hb�C;DR(t)� �(t)

i
= 1p

n

nP
i=1

�C;h;t

�
Yi;Ti;Si; ��; ��; �pTjS

�
+ oP(1).

� pnh3
hb�C;DR(t)� �(t)� h2 � BC;�(t)

i
d! N (0;VC;�(t)).

Asymptotic Properties of b�C;DR(t) Without Positivity
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Experiments and Discussion
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Y = T3 + T2 + 10S + �; T = sin(�S) + E; S � Unif[�1; 1]; E � Unif[�0:3; 0:3]:
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Note: �(t; s) = @
@t�(t; s) is estimated via automatic differentiation of a well-trained

neural network (inspired by Luedtke 2024).

Simulations for b�C;RA(t); b�C;IPW(t); b�C;DR(t) Without Positivity
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We compare our proposed DR estimator b�DR(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps
program (Schochet et al., 2001).

� Y is the proportion of weeks employed in 2nd year after enrollment.

� T is the total hours of academic and vocational training received.

� S comprises 49 socioeconomic characteristics, and n = 4024.

2000 4000
Hours in Training

0.10

0.05

0.00

0.05

0.10

D
er

iv
at

iv
e 

Ef
fe

ct
s

CL20 (NN, L=5)

2000 4000
Hours in Training

0.1

0.0

0.1

CL20 (KNN, L=5)

0 2000 4000
Hours in Training

0.2

0.1

0.0

0.1

DR(t) (RKS, L=5)

A Case Study Under Positivity

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 26/28



We compare our proposed DR estimator b�DR(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps
program (Schochet et al., 2001).

� Y is the proportion of weeks employed in 2nd year after enrollment.

� T is the total hours of academic and vocational training received.

� S comprises 49 socioeconomic characteristics, and n = 4024.

2000 4000
Hours in Training

0.10

0.05

0.00

0.05

0.10

D
er

iv
at

iv
e 

Ef
fe

ct
s

CL20 (NN, L=5)

2000 4000
Hours in Training

0.1

0.0

0.1

CL20 (KNN, L=5)

0 2000 4000
Hours in Training

0.2

0.1

0.0

0.1

DR(t) (RKS, L=5)

A Case Study Under Positivity

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 26/28



We study (nonparametric) doubly robust inference on �(t) = d
dtE [Y(t)] ; t 2 T � R.

1 Under the positivity condition:

� We propose b�DR(t) with standard nonparametric consistency and efficiency guarantee:
p

nh3
hb�DR(t)� �(t)� h2B�(t)

i
d! N (0;V�(t)) :

2 Without the positivity condition:

� Our bias-corrected IPW and DR estimators b�C;IPW(t); b�C;DR(t) reveal interesting
connections to nonparametric level set estimation problems (Bonvini et al., 2023):

Causal Inference () Geometric Data Analysis (https://uwgeometry.github.io/)!

3 Future Works:

� Sensitivity analysis on unmeasured confounding (Chernozhukov et al., 2022).

� Generalize our derivative estimators to other causal estimands:

� instantaneous causal effect d
dtE [Y(t)jS = s] (Stolzenberg, 1980);

� direct and indirect effects in mediation analysis (Huber et al., 2020; Xu et al., 2021)?

Summary and Future Work
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Thank you!
More details can be found in

[1] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous
Treatments. arXiv preprint, 2025. https://arxiv.org/abs/2501.06969.

All the code and data are available at
hhttps://github.com/zhangyk8/npDRDeriv.

Python Package: npDoseResponse.
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Assumption (Differentiability of the conditional mean outcome function)

For any (t; s) 2 T � S and �(t; s) = E (YjT = t;S = s), it holds that

1 �(t; s) is at least four times continuously differentiable with respect to t.

2 �(t; s) and all of its partial derivatives are uniformly bounded on T � S.

Let J be the support of the joint density p(t; s).

Assumption (Differentiability of the density functions)

For any (t; s) 2 J , it holds that

1 The joint density p(t; s) and the conditional density pTjS(tjs) are at least three times
continuously differentiable with respect to t.

2 p(t; s), pTjS(tjs), pSjT(sjt), as well as all of the partial derivatives of p(t; s) and pTjS(tjs) are
bounded and continuous up to the boundary @J .

3 The support T of the marginal density pT(t) is compact and pT(t) is uniformly bounded
away from 0 within T .

Detailed Regularity Assumptions
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Assumption (Regular kernel conditions)

A kernel function K : R! [0;1) is bounded and compactly supported on [�1; 1] withR
R K(t) dt = 1 and K(t) = K(�t). In addition, it holds that

1 �j :=
R
R ujK(u) du <1 and �j :=

R
R ujK2(u) du <1 for all j = 1; 2; :::.

2 K is a second-order kernel, i.e., �1 = 0 and �2 > 0.

3 K =

�
t0 7!

�
t0�t

h

�k1
K
�

t0�t
h

�
: t 2 T ; h > 0; k1 = 0; 1

�
is a bounded VC-type class of

measurable functions on R.

Assumption (Smoothness condition on S(t))

For any � 2 R and t 2 T , there exists an absolute constant A0 > 0 such that either (i)
“S(t)	 (A0j�j) � S(t + �)” for the support shrinking approach or (ii)
“LA0j�j(t) � S(t + �)” for the level set approach.

Detailed Regularity Assumptions
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The self-normalizing technique can reduce the instability of IPW and DR estimators
(Kallus and Zhou, 2018):

1 Self-Normalized Estimators Under Positivity:

b�norm
IPW (t) =

b�IPW(t)

1
nh

nP
j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

=

nP
i=1

Yi

�
Ti�t

h

�
K
�

Ti�t
h

�
bpTjS(TijSi)

�2h
nP

j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

;

and

b�norm
DR (t) =

nP
i=1

�
Yi�b�(t;Si)�(Ti�t)�b�(t;Si)

�� Ti�t
h

�
K
�

Ti�t
h

�
bpTjS(TijSi)

�2h
nP

j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

+
1
n

nX
i=1

b�(t;Si):

Self-Normalized IPW and DR Estimators

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 6/10



2 Self-Normalized Estimators Without Positivity:

b�norm
C;IPW(t) =

b�C;IPW(t)

1
nh

nP
j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

=

nP
i=1

Yi

�
Ti�t

h

�
K
�

Ti�t
h

�
�bp�(Sijt)bp(Ti;Si)

�2h
nP

j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

;

and

b�norm
C;DR(t) =

nP
i=1

�
Yi�b�(t;Si)�(Ti�t)�b�(t;Si)

�� Ti�t
h

�
K
�

Ti�t
h

�
�bp�(Sijt)bp(Ti;Si)

�2h
nP

j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

+

Z b�(t; s) � bp�(sjt) ds:

Self-Normalized IPW and DR Estimators
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We generate i.i.d. observations f(Yi;Ti;Si)gn
i=1 from the following data-generating

model (Colangelo and Lee, 2020):

Y = 1:2 T + T2 + TS1 + 1:2 ���TS + �
q

0:5 + FN (0;1)(S1); � � N (0; 1);

T = FN (0;1)

�
3���TS

�
� 0:5 + 0:75E; S = (S1; :::;Sd)

T � Nd (0;�) ; E � N (0; 1);

where

� FN (0;1) is the CDF of N (0; 1) and d = 20.

� ��� = (�1; :::; �d)
T 2 Rd has its entry �j =

1
j2 for j = 1; :::; d and �ii = 1, �ij = 0:5 when

ji� jj = 1, and �ij = 0 when ji� jj > 1 for i; j = 1; :::; d.

� The dose-response curve is given by m(t) = 1:2t + t2, and our parameter of interest
is the derivative effect curve �(t) = 1:2 + 2t.

Simulations Under the Positivity Condition
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Comparisons between our proposed estimators and the finite-difference approaches
by Colangelo and Lee (2020) (“CL20”) under positivity and with 5-fold cross-fitting

across various sample sizes.

Simulations for Estimating �(t) Under Positivity
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Comparisons between our proposed estimators and the finite-difference approaches
by Colangelo and Lee (2020) (“CL20”) under positivity and without cross-fitting

across various sample sizes.

Simulations for Estimating �(t) Under Positivity
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