Doubly Robust Inference on Causal Derivative Effects for
Continuous Treatments

Yikun Zhang

Joint work with Professor Yen-Chi Chen

Department of Statistics,
University of Washington

TGIF Meeting
February 7, 2025

Department of

STATISTICS W UNIVERSITY of WASHINGTON



Introduction

%%

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 2/38



The Notion of Derivative

The derivative f'(t) = iimow signals an instantaneous rate of change of a
—

function f with respect to the input variable ¢.
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The Notion of Derivative

The derivative f'(t) = iimow signals an instantaneous rate of change of a
—

function f with respect to the input variable ¢.

P = = —

Physics:

Position Velacity Acceleration
Time — Time —= Time —=

Position f(t) derlvagive Velocity o(t) = f'(t) dervalive A cceleration a(t) = o/(t).

Economics: marginal cost, marginal revenue, marginal propensity to consume

(Haavelmo, 1947) are all related to derivatives.
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Derivative and Causation

Derivatives measure rates of change over infinitesimal neighborhoods.

Position f(t) derlvagive Velocity o(t) = f'(t) dedvative A celeration a(t) = o/(t)
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Derivative and Causation

Derivatives measure rates of change over infinitesimal neighborhoods.

Position f(t) derlvagive Velocity o(t) = f'(t) dedvative A celeration a(t) = o/(t)

Given the values v(ty) and f(fo),

Acceleration a(t) =v'(t) <= Velocity o(t) over [to,H],

Velocity o(t) = f'(t) ‘ase”  Pposition f(t) over [to,t].
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Derivative and Causation

Derivatives measure rates of change over infinitesimal neighborhoods.
Position f(t) derlvagive Velocity o(t) = f'(t) dedvative A celeration a(t) = o/(t)
Given the values v(ty) and f(fo),
Acceleration a(t) = v/(f) 2% Velocity o(t) over [to, ],
cause”
=

Velocity o(t) = f'(t) Position f(t) over [to,H].

“The fundamental causal laws must use Brit. J. Phil. Sci. 65 (2014), 845-862
present properties and past neighborhood
properties to determine future neighborhood
properties ... the fundamental laws ... must
involve some neighbourhood properties as well. Why Phy sics Uses Second
And the most natural sort of neighbourhood ) )
property appears to be derivative.” Derivatives

Kenny Easwaran

See pp.857 of Easwaran (2014), which is also defended in Chapter 1 of Lange (2002).

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 4/38




The Role of Derivatives in Causal Inference

Goal: Study the causal effect of a treatment T € 7 on an outcome of interest Y € Y.

E [Y(t)] = mean potential outcome under a static intervention T = .
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When ¢ varies in a continuous space, f — E [Y(#)] := m(t) is a curve!
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The Role of Derivatives in Causal Inference

Goal: Study the causal effect of a treatment T € 7 on an outcome of interest Y € Y.

E [Y(t)] = mean potential outcome under a static intervention T = .

When ¢ varies in a continuous space, f — E [Y(#)] := m(t) is a curve!

0.4
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0.0 " .

0 2 4 6
Treatment value T=t

While m(t1) = m(t2), the derivative effects m'(t1), m'(t) are distinct!

The derivative effect curve 6(t) = m/(t) = th [Y(t)] is a continuous generalization
to the average treatment effect ETY(1)] — EYV(Q)]
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Estimand of Interest and its Alternatives

Our causal estimand of interest is the derivative effect curve

te 0(t) =m'(t) = ;tE [Y(t)] for teT.
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Estimand of Interest and its Alternatives

Our causal estimand of interest is the derivative effect curve
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Problem: 6(t) is non-regular and cannot be estimated in the rate 1/+/n.
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Our causal estimand of interest is the derivative effect curve

te 0(t) =m'(t) = ;tE [Y(t)] for teT.

Problem: 6(t) is non-regular and cannot be estimated in the rate 1/+/n.

There are some closely related but distinct estimands:

Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhdusler and Yu, 2019):

E[Y(T +0)] —E[Y(T)] for some deterministic d > 0.
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Our causal estimand of interest is the derivative effect curve

te 0(t) =m'(t) = ;tE [Y(t)] for teT.

Problem: 6(t) is non-regular and cannot be estimated in the rate 1/+/n.

There are some closely related but distinct estimands:

Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhdusler and Yu, 2019):

E[Y(T +0)] —E[Y(T)] for some deterministic d > 0.
Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker, 1993):

E[6(T)] =E [aat]E (Y|T, S)} ,  where § € S C R?is a covariate vector.
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Estimand of Interest and its Alternatives

Our causal estimand of interest is the derivative effect curve

te 0(t) =m'(t) = ;tE [Y(t)] for teT.

Problem: 6(t) is non-regular and cannot be estimated in the rate 1/+/n.

There are some closely related but distinct estimands:

Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhdusler and Yu, 2019):

E[Y(T +0)] —E[Y(T)] for some deterministic d > 0.
Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker, 1993):

E[6(T)] =E [aat]E (Y|T, S)} ,  where § € S C R?is a covariate vector.

Pros These new estimands may have more realistic interpretations in the actual context.

Cons They quantify only the overall causal effects, not those at a specific level of interest.
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Basic Framework and Assumptions

To identify and estimate 6(¢) from the observed data {(Y;, T, Si)}?zl, the following
assumptions are generally imposed.

Assumption (Identification Conditions)
(Consistency) Y; = Yi(t) whenever T; =t € T.
(Ignorability or Unconfoundedness) Yi(t)LLT; | S; forall t € T.
(Positivity) pr|s(t|s) > pmin > 0 forall (t,s) € T x S.

!Some mild assumptions are needed; see Theorem 1.1 in (Shao, 2003).
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(Positivity) pr|s(t|s) > pmin > 0 forall (t,s) € T x S.

a(t) = ZE w2 E {:t,u,(t, 5)] with  p(t,s) =E(Y|T =t,S=s).

Estimating (partial) derivatives is a challenging problem (Dai et al., 2016).

Data generally come from Y; = u(T;, Si) + ¢; butnot Y! = %,u(Ti, Si) + €.

!Some mild assumptions are needed; see Theorem 1.1 in (Shao, 2003).
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Basic Framework and Assumptions

To identify and estimate 6(¢) from the observed data {(Y;, T, Si)}?zl, the following
assumptions are generally imposed.

Assumption (Identification Conditions)
(Consistency) Y; = Yi(t) whenever T; =t € T.
(Ignorability or Unconfoundedness) Yi(t)LLT; | S; forall t € T.
(Positivity) pr|s(t|s) > pmin > 0 forall (t,s) € T x S.

a(t) = ZE w2 E {:t,u,(t, 5)] with  p(t,s) =E(Y|T =t,S=s).

Estimating (partial) derivatives is a challenging problem (Dai et al., 2016).
Data generally come from Y; = u(T;, Si) + ¢; butnot Y! = %,u(Ti, Si) + €.

Positivity is a strong assumption with continuous treatments!

!Some mild assumptions are needed; see Theorem 1.1 in (Shao, 2003).
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An Example of the Positivity Violation

Assumption (Positivity Condition)
There exists a constant prin > 0 such that pris(t|s) > pmin for all (t,s) € T x S.

T =sin(wS) + E, E ~ Unif[-0.3,0.3], S~ Unif[-1,1], and EILS.

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 8/38



An Example of the Positivity Violation

Assumption (Positivity Condition)
There exists a constant ppin > 0 such that pris(t|s) > pmin for all (t,s) € T x S.

T =sin(wS) + E, E ~ Unif[-0.3,0.3], S~ Unif[-1,1], and EILS.

B joint support of (T,S)
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Highlights of Today’s Talk

Under the positivity condition:

We propose a doubly robust (DR) estimator of §(¢) via kernel smoothing.
Deriving a DR estimator for (t) is more intricate than for m(1).
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Highlights of Today’s Talk

Under the positivity condition:

We propose a doubly robust (DR) estimator of §(¢) via kernel smoothing.
Deriving a DR estimator for (t) is more intricate than for m(1).

>

Regression Adjustment (RA) + Inverse Probability Weighting (IPW) { DR
N

Without the positivity condition:

m(t) and 6(t) are identifiable with an additive structural assumption:

Y(t) = m(t) + n(S) + e (1)

However, the usual IPW estimators of m(t) and (t) are still biased even under (1).

Their estimation biases are due to the support discrepancy.

We propose our bias-corrected IPW and DR estimators of 6(t).

Our approach establishes an interesting connection to nonparametric support and
level set estimation problems.
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Inference Theory for 6(t) Under Positivity

%%
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Recap of the Identification Under Positivity

Assumption (Identification Conditions)
(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability or Unconfoundedness) Y(t) LT | S forall t € T.
(Positivity) pr|s(t|s) > Pmin > 0 forall (t,s) € T x S.

Given that u(t,s) = E(Y|T =t,S = s), we have

RA or G-computation: {;”it) =E[Y()]=E [,U'(? Si]
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Recap of the Identification Under Positivity

Assumption (Identification Conditions)
(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability or Unconfoundedness) Y(t) LT | S forall t € T.
(Positivity) pr|s(t|s) > Pmin > 0 forall (t,s) € T x S.

Given that u(t,s) = E(Y|T =t,S = s), we have

RA or G-computation: {;”it) =E[Y()]=E [,U'(? Si]

() = FE[Y(H)] = FE[u(
ow. 4710 =B = timE [ CRA]
8(t) LB [¥(t) - 722

K:R — [0, 00) is a kernel function and /1 > 0 is a smoothing bandwidth parameter.
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Dose-Response Curve Estimation Under Positivity

There are three major strategies for estimating
Tt
Y-K(TH) ]

m(t) = E[Y(t)] = E [u(t, S)] = limE

h—0 h- pT|5(T|S)

from the data {(Y;, T}, Si)} ;.
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m(t) = E[Y(t)] = E [u(t, S)] = limE

h—0 h- pT|5(T|S)

from the data {(Y;, T}, Si)} 4
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from the data {(Y;, T}, Si)} 4
RA Estimator (Robins, 1986 Gill and Robms 2001):

imra(t Z,u,tS

IPW Estimator (Hirano and Imbens, 2004; Imal and van Dyk, 2004):
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There are three major strategies for estimating
Tt
Y-K(TH) ]

m(t) = E[Y(t)] = E[(4,S)] = imE I pris(T]S)

h—0

from the data {(Y;, T}, Si)} 4
RA Estimator (Robins, 1986 Gill and Robms 2001):

imra(t Z,u,tS

IPW Estimator (Hirano and Imbens, 2004; Imal and van Dyk, 2004):

1 n K ( Ti};t ) v
”h — pris(TilS)) "
DR Estimator (Kallus and Zhou, 2018; Colangelo and Lee, 2020):

T, t
Rt nhZ{ ( ) [Yi—ﬁ(f,si)]Jrh'ﬁ(t,Si)}-

impw(t) =

pris(TilS:)
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RA and IPW Estimators of 6(t) Under Positivity

To estimate 6(t) = %E [Y()]=E [%,u,(t, S)} from {(Y;, T;, Si)}!_,, we could also have
three strategies:

RA Estimator:

Bealt) = SO B(,S) with  B(t,s) = oop(t,s).
i—=1
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RA and IPW Estimators of 6(t) Under Positivity

To estimate 6(t) = %E [Y()]=E [%,u,(t, S)} from {(Y;, T;, Si)}!_,, we could also have
three strategies:

RA Estimator:

noo. 0
= % Z IB(t, Sz) with ﬂ(t, S) = a“(t: S).
i=1

K T=t
Question: How to generalize the IPW form m(t) = }lgr(l) {W] to identify 6(t)?
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RA and IPW Estimators of 6(t) Under Positivity

To estimate 6(t) = %E [Y()]=E [%,u,(t, S)} from {(Y;, T;, Si)}!_,, we could also have
three strategies:

RA Estimator:

noo. 0
= % Z IB(t, Sz) with ﬂ(t, S) = a“(t: S).
i=1

K T=t
Question: How to generalize the IPW form m(t) = lim E {hYPK(s(TS))] to identify 6(t)?

h—0

IPW Estimator: Inspired by the derivative estimator in Mack and Miiller (1989),
we propose

([ Ti=t
HHJW hz Z ( ) K ( ) with &k, = /MZ . K(u) du

Ky - pT\S(T |S
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Challenges of Deriving a DR Estimator of ()

The usual approach to construct a DR (or AIPW) estimator is as follows:

-~ 1 - ~ “u o -~
mra(t) = ” > B(t,Si) + mpw(t) =
i=1

. 11—
— fnpr(t) = + 0 Z a(t, S:).

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 14/38
g 3



Challenges of Deriving a DR Estimator of ()

The usual approach to construct a DR (or AIPW) estimator is as follows:

-~ 1 - ~ “u o -~
mra(t) = ” > B(t,Si) + mpw(t) =

. 1
= fnpr(t) = +o > B(tS)-

This “naive” combining approach does not work for defining a DR estimator of 6(t):

 (5F) K (557)
Bra(t) ZﬁtS “t Brew (t) nhzzgm'y

i —
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Challenges of Deriving a DR Estimator of ()

The usual approach to construct a DR (or AIPW) estimator is as follows:

-~ 1 - ~ “u o -~
mra(t) = ” > B(t,Si) + mpw(t) =

. 1
= fnpr(t) = +o > B(tS)-

This “naive” combining approach does not work for defining a DR estimator of 6(t):

 (5F) K (557)
Bra(t) ZﬁtS “t Brew (t) nhzzgm'y

i —

- 1 n <Tht>K<Tht> e 1 no_.
9AIPW,1(t) = Tz igl Tk prs(TiIS) [Yi - Bt Si)] +35 g:l B(t, Si);
k(T
%) _ 1y <“> Yi (Tizt 8 . 153 -
Farew2(f) = 57 ,-; Pris(TilS:) {’1"‘2 ( h > - B(, S’)} ta 1-;1 At ) etc.
Remark: All these AIPW estimators are, at best, singly robust!!
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Doubly Robust Estimator of §(t) Under Positivity
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Doubly Robust Estimator of §(t) Under Positivity

Tt n
for(t) = % >, M {Yi — B, S:) — (Ti— 1) - B(t, 5:‘)] + % B(t,S).

IPW component RA component

The “IPW component” leverages a local polynomial approximation to push the
residual to (roughly) second order.

Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds as i — 0.
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Doubly Robust Estimator of 8(t) Under Positivity

IPW component RA component

The “IPW component” leverages a local polynomial approximation to push the
residual to (roughly) second order.

Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds as i — 0.

Different from ipw (t) and fﬁDR(t) we must compute the inverse probability

weights as,\ibutnot,\ fori=1,..,n
& (77150 (S '
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Asymptotic Properties of Opg(t)
Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and
i, B, pr|s are estimated on a dataset independent of {(Y;, Ti, Si) }iey;
at least one of the model specification conditions hold:
prs(tls) KA pris(t|s) = pris(t|s) (conditional density model),

A(t,s) > a(t,s) = u(t,s) and B(t,s) > B(t,s) = B(t,s) (outcome model);

sup_|[Pris(ulS) - pris(uIS)||,, {IIA(ES) = ult, S)ll, + 1 ||B(£,5) - B(t,S) LZ] =or (),

|u—t]<h
we prove that
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Theorem (Theorem 1 in Zhang and Chen 2025)
Under some regularity assumptions and
i, B, pr|s are estimated on a dataset independent of {(Y;, Ti, Si) }iey;
at least one of the model specification conditions hold:
prs(tls) KA pris(t|s) = pris(t|s) (conditional density model),

A(t,s) > a(t,s) = u(t,s) and B(t,s) > B(t,s) = B(t,s) (outcome model);

sup |[Pmis(ulS) — pris(ul)|l,, [Ilﬁ(t, $) - ult, S)ll, + 1 ||Bt, S) - Bt ) LZ] =or (),

|u—t]<h
we prove that

Vnh3 [§DR(t) - H(t)} = ﬁ jEl¢h,t (Yi, T;, Si; ﬁ,B,r_’ﬂs) + op(1).

Vi [Bog(t) — 6(t) — I2Ba()] 5 N (0, Va(1)).
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Statistical Inference on 6(t)

An asymptotically valid inference on 6(t) = %E [Y(t)] can be conducted through

vk [Bor(t) — 6(t) — 1 Ba(1)] 5 N (0, Va(1))
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Statistical Inference on 6(t)

An asymptotically valid inference on 6(t) = 418 [Y(t)] can be conducted through

t

vk [Bor(t) — 6(t) — 1 Ba(1)] 5 N (0, Va(1))

We estimate Vy(t) = E [¢%,t <Y, T,S; i, Bﬁﬂs)] with

|) [Y —a(t, ) — (T —t)- B(t,S)]

¢h,t(Y,T,S;p,,B,pT|S): (7) ( 5

R
Vh - K2 - pT\S(

by Ve(t) = + ; O s (Y, T,S; i, B, ?T|s)-
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Statistical Inference on 6(t)

An asymptotically valid inference on 6(t) = th [Y(t)] can be conducted through
vk [Bor(t) — 6(t) — 1 Ba(1)] 5 N (0, Va(1))

We estimate Vy(t) = [¢ht (Y T,S; i, B, PT\5>] with

Bt (Y, T, S;ﬂ,ﬁ,f?ﬂs) = ( ) ( |) -[Y - a(t,S) — (T —t)- B(t,S)]

V- k2 - pris(T|S)
o 1 42 = A
by Vg(t) = El ¢h7t (Y1 T; S: ey ﬂ; PT|S) .
1=
i, B, Pr|s can be estimated via Fold Fold 2 Fold 3

sample-splitting or cross-fitting.

T
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Statistical Inference on 6(t)

An asymptotically valid inference on 6(t) = 418 [Y(t)] can be conducted through

t

vk [Bor(t) — 6(t) — 1 Ba(1)] 5 N (0, Va(1))

We estimate Vy(t) = E [¢%,t <Y, T,S; i, Bﬁﬂs)] with

¢h,t(Y,T,S;p,,B,pT|S): (7) (

i) i i
\/E Ko - pT\S( | [Y—,LL(i’,S)—(T ) ﬂ(t S)]

)
by Ve(t) = + ; O s (Y, T,S; i, B, ?T|s)-

i, B, pr|s can be estimated via sample-splitting or cross-fitting.

The explicit form of By(t) is complicated, but /i By(t) is asymptotically negligible
whenh = O (n_%).
This order aligns with the outputs from usual bandwidth selection methods (Wand
and Jones, 1994; Wasserman, 2006).
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Nonparametric Efficiency Guarantee for 8pg(t)

Question:?> Do we have a nonparametric efficiency lower bound for Gpg(t)?

*T acknowledge Ted Westling and Aaron Hudson for pointing out this direction.
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Nonparametric Efficiency Guarantee for 8pg(t)

Question:?> Do we have a nonparametric efficiency lower bound for Gpg(t)?

t — 8(t) :== ¥(Po)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

VteT, 3{P.:ecR} st lim ¥ (Pe)(t) = ¥(Po)(t)

e—0 €

does not exist.

*T acknowledge Ted Westling and Aaron Hudson for pointing out this direction.
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does not exist.

. . YK .
For a fixed h > 0, the smooth functional $(Py)(t) := E Wmm’s) is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

*T acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 18/38
g 3



Nonparametric Efficiency Guarantee for 8pg(t)

Question:?> Do we have a nonparametric efficiency lower bound for Gpg(t)?

t — 8(t) :== ¥(Po)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

VteT, 3{P.:ecR} st lim ¥ (Pe)(t) = ¥(Po)(t)

e—0 €

does not exist.

T—t T—t
For a fixed h > 0, the smooth functional $(Py)(t) := E [}W] is pathwise
differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).
Up to a shrinking bias O(h?), the efficient influence function for ®(Py)(t) leads to

B Z (T t>K<T t) [Y; — (T S)]—I—liﬁ(t S;)
Er( nhz Ko - pT\ST’S) i — MLy 96 n ) 9i)-

» The asymptotic variances of pg(t) and 8gr(t) are the same (or differing by O(h2))!

*T acknowledge Ted Westling and Aaron Hudson for pointing out this direction.
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Inference Theory for 6(t) Without Positivity

%%
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Why Do We Need Positivity?

Assumption (Identification Conditions)
(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability or Unconfoundedness) Y () LLT | S forall t € T.
(Positivity) pris(t[s) > pmin > 0 forall (t,s) € T x S.

The RA (or G-computation) formulae are given by

m(t) =E[Y(H)] = E[u(1,S)] and 6(t) = th[Y( N =E| 5 u5)].

Y-K(H)
h - pris(T|S)

IimE

=E[u(tS)] and lmE
h—0

h—0
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Why Do We Need Positivity?

Assumption (Identification Conditions)
(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability or Unconfoundedness) Y () LLT | S forall t € T.
(Positivity) pris(t[s) > pmin > 0 forall (t,s) € T x S.

The RA (or G-computation) formulae are given by

m(t) = E[Y(A) =E[u(t,S)] and  8() = ZENOI=E |5 u(t5).
The IPW approaches also rely on the following identities:

Y-K(H) Y- (Tht)K(%) 8
i pris(TIS) | ] E[at (t’s)]'

IimE

=E[u(tS)] and lmE
h—0

h—0

» Identification Issue: Without positivity, u(t,s) = E(Y|T =t,S = s) is not
well-defined outside the support J C T x S of the joint density p(t, s).
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Identification Strategy Without Positivity

Assumption (Identification Conditions)

(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability) Y(t) is conditionally independent of T given S forall t € T.
(Treatment Variation) Var(T|S = s) > 0 forall s € S.

B joint support of (T,S)
1.0

0.5

~ 0.0

-0.5

-1.0

0.0 0.5 1.0

S

-1.0 -0.5
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Identification Strategy Without Positivity

Assumption (Identification Conditions)

(Consistency) Y = Y(t) whenever T =t € T.
(Ignorability) Y(t) is conditionally independent of T given S forall t € T.
(Treatment Variation) Var(T|S = s) > 0 forall s € S.

B joint support of (T,S)

Assumption (Extrapolation; Zhang et al. 2024)

Assume (t,s) — E[Y(t)|S = s] to be differentiable
w.r.to t for any (t,s) € T x S with psr(s|t) > 0
and

1.0 pS\T(Slt)>O

0.5

~ 0.0

o(t) = ZEIY(] = E [ ZE[Y(0)S]

£ [BE[Y(t)]S] \T:t} .

-0.5
pris(t|s) =0
-1.0 _
ot

00 05 1.0
S Additionally, it holds true that E(Y) = E [m(T)].
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Identification Strategy Without Positivity

IF6(t) = $E[Y()] = E [ZE[Y(D)|S]] = E [SE[Y(1)]S] ‘T = t] holds true, then
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Identification Strategy Without Positivity

IF6(t) = $E[Y()] = E [ZE[Y(D)|S]] = E [SE[Y(1)]S] ‘T = t] holds true, then

1.0

0.5

= 0.0

-0.5

-1.0

-1.0

B joint support of (T,S)

psir(s|t) >0

pris(t|s) =0

-0.5
S

0.0 0.5 1.0

8(t) = E [;E[Y(MS]‘T _ t]

© g [;E[Y(t)\T —t,s||T= t]

W _ _
) {atEmT =t, S)‘T = t]

_E [:t,u,(t, s)|T = t] — Bc(b).

(*) Ignorability; (**) Consistency.
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Identification Strategy Without Positivity

IF6(t) = $E[Y()] = E [ZE[Y(D)|S]] = E [SE[Y(1)]S] ‘T = t] holds true, then

1.0

0.5

= 0.0

-0.5

-1.0

-1.0

B joint support of (T,S)

psir(s|t) >0

pris(t|s) =0

-0.5
S

0.0 0.5 1.0

8(t) = E [ZE[Y(MS]‘T _ t]

© g [;E[Y(t)\T —t,s||T= t]

W _ _
) {atEmT =t, S)‘T = t]

_E [:t,u,(t, s)|T = t] — Bc(b).

(*) Ignorability; (**) Consistency.

:Bc(u)

—
By the fundamental theorem of calculus, m(t) = m(T) + [1.m'(u) du so that
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Identification Strategy Without Positivity

If 6(t) = $E[Y(1)] = E [ZE[Y(1)]S]

B joint support of (T,S)

1.0 psir(s|t) >0

0.5
~ 0.0
-0.5

pris(t|s) =0
-1.0

-1.0 -05

S

By the fundamental theorem of calculus, m(t)

m(t):E[m(t)]:E(Y)JrE{/ut [st (T,8)|T = u

=E [JE[¥(1)

0.0 0.5 1.0

IS] ‘T = t] holds true, then

8(t) = E [6E[Y(t

Bt NS]‘T:t]

YE [stIE[Y(t)\T = 1,8]|T = t]

** a
’E{a E(Y|T = t, 8 ‘T_t]

=E [:t t,S)‘T: t] = Bc(h).

(*) Ignorability; (**) Consistency.
=0c (u)

—
= m(T) + [y m'(u) du so that

du} foranyt e 7.

Yikun Zhang
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Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial
statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

Y(t)=m(t)+n(S)+e or Y=im(T)+n(S)+e. )
m:T —- Rand 5 :S — R are deterministic functions.

e € Ris an independent noise variable with E(e) = 0 and Var(e) > 0.
m(t) = E[Y(t)] = m(t) + E[n(S)] and 8(t) = m'(t) = LE[Y(t)] = ii'(t).
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Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial
statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

Y(t) =m(t)+n(S)+e€ or Y=m(T)+n(S)+e. (2)

m:T —- Rand 5 :S — R are deterministic functions.
e € Ris an independent noise variable with E(e) = 0 and Var(e) > 0.
m(t) = E[Y(t)] = m(t) + E [n(S)] and 8(t) = m'(t) = FE[Y(£)] = ' (1).

Proposition (Proposition 2 in Zhang et al. 2024)

Under the additive confounding model (2), the extrapolation condition holds:

o(t) = E{a

2 u(t,S)|T = t} —6c(t) and E(Y)=E[(t) + n(S)] = E [m(T)].
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Example: Additive Confounding Model

Consider the additive confounding model, which is commonly assumed in spatial
statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

Y(t) =m(t)+n(S)+e€ or Y=m(T)+n(S)+e. (2)

m:T —- Rand 5 :S — R are deterministic functions.
e € Ris an independent noise variable with E(e) = 0 and Var(e) > 0.
m(t) = E[Y(t)] = m(t) + E [n(S)] and 8(t) = m'(t) = FE[Y(£)] = ' (1).

Proposition (Proposition 2 in Zhang et al. 2024)

Under the additive confounding model (2), the extrapolation condition holds:

0

E
() = E | =-ult,

§)|T = t} —6c(t) and E(Y)=E[(t) + n(S)] = E [m(T)].

» Drawback of (2): The treatment effect is homogeneous for any S =s € S.

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 23/38
g )



Estimation of m(t) and é(t) Without Positivity

0

m(t) = E {Y+/u T O du| and 6 =E [at,u(t, S)‘T:t] :/;u(t,s)dFST(sH).
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Estimation of m(t) and é(t) Without Positivity

u=t

m(t) = E {Y 4 /u:T 8(1t) du

and  6(t) =E [aat,u(t, $)|1 = t] _ / %,u,(t,s)dPs‘T(sH).

» RA (Integral) Estimator Without Positivity:

n

_ 1 =t - . R .
fiicra(t) = EZ [Yi+ AT. GC,RAG)dt] and fcga(t) = / B(t, s) dEspr(s|t).

i=1
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Estimation of m(t) and é(t) Without Positivity

u=t

m(t) = E {Y 4 /u:T 8(1t) du

and  6(t) =E [aat,u(t, $)|1 = t] _ / %,u,(t,s)dPs‘T(sH).

» RA (Integral) Estimator Without Positivity:

n

N 1
fic ra(t) = . > [Yi +

i=1

tA ~ —~ —~ o~
tT.GC,RA(t')dt] and  Bcra(t) = / B(t,s) dEgr(sb).

fitted

b
B(t,s) = %,u(t, s) = Y (partial) local polynomial regression (Fan and Gijbels,
1996) or neural networks (Paszke et al., 2017; Blondel and Roulet, 2024).
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B(t,s) = %,u(t, s) v (partial) local polynomial regression (Fan and Gijbels,
1996) or neural networks (Paszke et al., 2017; Blondel and Roulet, 2024).

fitted b
Fgr(s|t) ol Nadaraya-Watson conditional CDF estimator (Hall et al., 1999).
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Estimation of m(t) and é(t) Without Positivity

u=t

m(t) = E {Y 4 /u:T 8(1t) du

and  6(t) =E [aat,u(t, $)|1 = t] _ / %,u,(t,s)dPs‘T(sH).

» RA (Integral) Estimator Without Positivity:

n

N 1
fic ra(t) = . > [Yi +

i=1

tA ~ —~ —~ o~
tT.GC,RA(t')dt] and  Bcra(t) = / B(t,s) dEgr(sb).

fitted b
B(t,s) = %,u(t, s) v (partial) local polynomial regression (Fan and Gijbels,
1996) or neural networks (Paszke et al., 2017; Blondel and Roulet, 2024).

fitted b
Fgr(s|t) ol Nadaraya-Watson conditional CDF estimator (Hall et al., 1999).

Compute the integral via a fast Riemann sum approximation (Zhang et al., 2024).
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Estimation of m(t) and é(t) Without Positivity

u=t

m(t) = E {Y 4 /u:T 8(1t) du

and  6(t) =E [aat,u(t, $)|1 = t] _ / %,u,(t,s)dPs‘T(sH).

» RA (Integral) Estimator Without Positivity:

n

N 1
fic ra(t) = . > [Yi +

i=1

tA ~ —~ —~ o~
tT.GC,RA(t')dt] and  Bcra(t) = / B(t,s) dEgr(sb).

fitted

b
B(t,s) = %,u(t, s) = Y (partial) local polynomial regression (Fan and Gijbels,
1996) or neural networks (Paszke et al., 2017; Blondel and Roulet, 2024).

fitted b
Fgr(s|t) ol Nadaraya-Watson conditional CDF estimator (Hall et al., 1999).

Compute the integral via a fast Riemann sum approximation (Zhang et al., 2024).

Establish the consistency of nonparametric bootstrap for i1ic ra(t) and §C,RA(t).
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Estimation Biases of IPW Estimators Without Positivity

Question: How about IPW and DR estimators of 6(t) without positivity?

For identification, we assume Y(t) = m(t) + n(S) + €.
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Estimation Biases of IPW Estimators Without Positivity

Question: How about IPW and DR estimators of 6(t) without positivity?
For identification, we assume Y(t) = /m(t) + n(S) + €
Consider usual (oracle) IPW estimators of m(t) and 6(t) as

1 2 Yi-K (Trt) h2 Z (T,-}:t) K (Tl-h—t>.

nh = prs(TilS:) G k2 - pris(TiSi)

mpw(t) =

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 25/38



Estimation Biases of IPW Estimators Without Positivity

Question: How about IPW and DR estimators of 6(t) without positivity?
For identification, we assume Y(t) = /m(t) + n(S) + €
Consider usual (oracle) IPW estimators of m(t) and 6(t) as
L K () ()R ()
nh = pris(TilS:) Srw(t h2 Z k2 pris(TilSi)
We show in Proposition 2 of Zhang and Chen (2025) that
tim  (Fapw(£)] = (1) - (1) + () # m(t),

mpw(t) =

lim E [Brew(D)] =

where p(t) =P (S € S(t)) and w(t) = E [U(S)ﬂ{seS(t)}]-
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Estimation Biases of IPW Estimators Without Positivity

Question: How about IPW and DR estimators of 6(t) without positivity?
For identification, we assume Y(t) = /m(t) + n(S) + €
Consider usual (oracle) IPW estimators of m(t) and 6(t) as
L K () ()R ()
nh = pris(TilS:) Srw(t h2 Z k2 pris(TilSi)
We show in Proposition 2 of Zhang and Chen (2025) that
tim  (Fapw(£)] = (1) - (1) + () # m(t),

mpw(t) =

lim E [Brew(D)] =

where p(t) =P (S € S(t)) and w(t) = E [U(S)ﬂ{seS(t)}]-

Key Issue: The conditional support S(t) of psr(s|t) and the marginal support S of
ps(s) are different!!
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Bias-Corrected IPW Estimator of 6(t)

Y () K () ] _ {"'1’(” PO g,

h2 - Kky - pris(T1S) 0

lim E |6 = limE
lim [QIPW(t)} jm

where p(t) =P (S € S(t)) and w(t) = E [U(S)R{SESU)}}-
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Bias-Corrected IPW Estimator of 6(t)

Y(Th_t)K(Th_t)] B {m’(t)-p(t) Lo

lim I |6 =
lim [HIPW(t)} MmE | K2 - pris(T]S)

o)
where p(t) = P(S € S(t)) and w( [ Myses) }
We first want to disentangle 6(t) = 7/ (t) from the bias term:
Y- (57 K (%) _
l = ' (t) + O(h?
k3 prs(T]S) - i (£) + O(r)

+ /R]E {[m(t + uh) + 1(S)] [Lises(rums®} — L{sesn\s(t+un}] ‘T = t} u - K(u)du.

Non-vanishing Bias

S

S(t)NS(t + uh)

!
. [N
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o[- G () )

|7 k2 prs(T1S) - ps(S) |

= 7i!'(t) + O(h*) + “Non-vanishing Bias”.
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Bias-Corrected IPW Estimator of 6(t)

o[ ) () 6

|_ h? - ka - pris(T|S) - ps(S) J

We replace with a ¢-interior conditional density p¢(s|t) so that

{s € S(t) : pe(s|t) >0} C S(t+6) forany 0 € [—h,h].

= 7i!'(t) + O(h*) + “Non-vanishing Bias”.

S(t+6) S
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Bias-Corrected IPW Estimator of 6(t)

o[ ) () 6

|_ h? - ka - pris(T|S) - ps(S) J

We replace with a ¢-interior conditional density p¢(s|t) so that

{s € S(t) : pe(s|t) >0} C S(t+6) forany 0 € [—h,h].

= 7i!'(t) + O(h*) + “Non-vanishing Bias”.

S(t+6) S

v
4
1
1

S(HAS(t +6). >

YRR eS| _ 24 2
Now, we have that E hZ'LZ'Pﬂs(%\S)'Ps(S) = m/(t) + O(h?).
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¢-Interior Conditional Density

Question: How can we find a {-interior conditional density p¢(s|t)?
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¢-Interior Conditional Density

Question: How can we find a {-interior conditional density p¢(s|t)?

Support shrinking approach Level set approach

S(t +6) & S S(t+0) S

II ~ o~ II
: : S
S(t)AS(t +0). -

( ls=sh2¢) L) = {s €800 parteld) > ¢,

in
x€0S

SHOAS(t+0). >

Ste(= {s eS(t):

_ PS|T(s|t) . ]l{sgg(f)eg}. pe(slt) = PS\T(S]t) . l{seﬁg(t)}.
Jswec Psir(silt) dsy [z oy psir(si|t) dsy

pe(slt)
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II ~ o~ II
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in
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Bias-Corrected IPW and DR Estimators of 6(t)

Bias-Corrected IPW Estimator:

(T t) K( ,»—f) pe(Silt)
fc.ow(t z; k2 - 9(Ts, Si) ’

where
p(t,s),Pe(s|t) are estimators of p(t, s), pe (s|t).
¢ canbe setto, e.g., { = 0.5 max {psr(Silt) : i1 =1, ...,n}.
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Bias-Corrected IPW and DR Estimators of 6(t)

Bias-Corrected IPW Estimator:

(T t) K( ,»—f) pe(Silt)
fc.ow(t z; k2 - 9(Ts, Si) ’

where
p(t,s),Pe(s|t) are estimators of p(t, s), pe (s|t).
¢ canbe setto, e.g., { = 0.5 max {psr(Silt) : i1 =1, ...,n}.

Bias-Corrected DR Estimator:

n T,—t Tit) = ‘
Beon() hzZ( ) K (5 petsin

K2 - ?(Tix Sl)

[Yi = B(t, $) — (Ti = 1) - B(4,S)]

IPW component
+ [ Bltys)-peslt)ds

RA component
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Asymptotic Properties of 8c pr(t) Without Positivity
Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and
i, B, P, p¢ are estimated on a dataset independent of {(Y;, Ti, Si)}i_q/
- _ - P
vl [[pe(SIt) = Pe(SIB)ll L, = op(1), where pe(slt) = pe(slt);

at least one of the model specification conditions hold:

A(t,s) > a(t,s) = u(t,s) and B(t,s) > B(t,s) = B(t,s) (outcome model);

sup |[p(u,S) — p(u S)l,, (1A S) =t S)l,, +h ||Bt, ) - B S|, | =or ().
we prove that

Yikun Zhang
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Asymptotic Properties of 8c pr(t) Without Positivity
Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and
i, B, P, p¢ are estimated on a dataset independent of {(Y;, Ti, Si)}i_q/
- _ - P
vl [[pe(SIt) = Pe(SIB)ll L, = op(1), where pe(slt) = pe(slt);

at least one of the model specification conditions hold:

A(t,s) > a(t,s) = u(t,s) and B(t,s) > B(t,s) = B(t,s) (outcome model);

sup [[p(,S) — p(u, ), (& S) = ut, ), +1|[Bt,8) = pES)||,,| =or (7).

we prove that
Vnh3 [gC,DR(t) - 9(1‘)] = ﬁ > Bcn,t (Yz', T, S;; ﬂ,B,ﬁﬂs) + op(1).
i=1

Vnh? [§C,DR(f) —6(t) - thc,e(f)] L N (0, V(D).
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Statistical Inference on 6(¢) Without Positivity

Asymptotically valid inference on 6(t) = 5E [Y(t)] can be done via

Vi3 [Bc,or(t) — 6(t) = *Bea(t)] 5 N (0, Veo(®)).

17 n — =T o~ ~
by che(t) = % Zjl ¢%7h,t (Y) T: S) Hy ﬂ; p, PC) .
1=
fi, B, P, P¢ can be estimated via sample-splitting or cross-fitting.

We choose an implicit undersmoothing bandwidth i = O (n_%) to neglect the bias
h2Bc o(H).

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 31/38



Simulations and Case Study

%%
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Simulations for HAC,RA(t), HAC,H)W(t), §C,DR(t) Without Positivity
Y=T>+T?>+10S+¢, T=sin(xS)+E, S~ Unif[-1,1], E ~ Unif[—0.3,0.3].

n =500 n=1000 n=4000 n=10000

Bias for 6(t)
»-' »-'
[ o [
I =
w o [
= =
u o u
bR
w o w

RMSE for 6(t)

15 15 15 is Bra(t) (P)
== Bipw(t) (P)
10 10 10 10 Gon(t) (P)
—— Bc.ralt) (NP)
5 B 5 5 w —— Bc.ipw(t) (NP)

—— Bc,or(t) (NP)

6.5 0.0 0’5 0.5 0’0 05 —0.5 00 0’5 6.5 00 0’5
_09sFmmmmmmmmmm=m=| Femmmmm—— x| [ -z Fe====== -
s 0.9 M 0.9
> 0.9
Z om0 WW W
2 0.8 0.8
5 0.85
H 0.8 0.7
Eo.s0 0.7
g 0.6
©o0.75 0.7 0.6
6.5 0.0 o 6.5 0.0 o 0.5 00 0’5 —6.5 0.0 o
Treatment value t Treatment value t Treatment value t Treatment value t

Note: S(t,s) = %,u(t, s) is estimated via automatic differentiation of a well-trained
neural network (inspired by Luedtke 2024).
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A Case Study Under Positivity

We compare our proposed DR estimator 8pg(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps
program (Schochet et al., 2001).
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Y is the proportion of weeks employed in 2" year after enrollment.

T is the total hours of academic and vocational training received.

S comprises 49 socioeconomic characteristics, and n = 4024.
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A Case Study Under Positivity

We compare our proposed DR estimator 8pg(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps
program (Schochet et al., 2001).

Y is the proportion of weeks employed in 2" year after enrollment.

T is the total hours of academic and vocational training received.

S comprises 49 socioeconomic characteristics, and n = 4024.
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Summary of Today’s Talk

We study (nonparametric) doubly robust inference on 8(t) = E [Y(t)] with and

without the positivity condition.
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Under the positivity condition,

naive AIPW estimators are not doubly robust;

our proposed DR estimator Bpr(t) achieves doubly robust consistency at the standard
nonparametric rate.
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nonparametric rate.

fpr(t) admits an asymptotically linear form for pointwise (and uniform) inference
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we prove the inconsistency of conventional IPW and DR estimators even when
Y(t) =m(t) + n(S) + e
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Y(t) =m(t) + n(S) + e

our bias-corrected IPW and DR estimators reveal a novel connection to
nonparametric set estimation problems (Bonvini et al., 2023).
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Summary of Today’s Talk

We study (nonparametric) doubly robust inference on 8(t) = E [Y(t)] with and
without the positivity condition.

Under the positivity condition,

naive AIPW estimators are not doubly robust;

our proposed DR estimator Bpr(t) achieves doubly robust consistency at the standard
nonparametric rate.

fpr(t) admits an asymptotically linear form for pointwise (and uniform) inference

whenh = O (n*%).

Without the positivity condition,
we prove the inconsistency of conventional IPW and DR estimators even when
Y(t) =m(t) + n(S) + e
our bias-corrected IPW and DR estimators reveal a novel connection to

nonparametric set estimation problems (Bonvini et al., 2023).

Causal Inference Meets Geometric Data Analysis (https://uwgeometry.github.io/)!
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Open Questions and Future Work

Debiasing Doubly Robust Estimators: Can we debias our DR estimators §DR(t)
and §C,DR(t) through explicit bias estimation (Calonico et al., 2018; Cheng and
Chen, 2019; Takatsu and Westling, 2024) or calibration (van der Laan et al., 2024)?
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confounding (Chernozhukov et al., 2022)?
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Open Questions and Future Work

Debiasing Doubly Robust Estimators: Can we debias our DR estimators §DR(t)
and §C,DR(t) through explicit bias estimation (Calonico et al., 2018; Cheng and
Chen, 2019; Takatsu and Westling, 2024) or calibration (van der Laan et al., 2024)?

Violation of Ignorability: Can we conduct sensitivity analysis on unmeasured
confounding (Chernozhukov et al., 2022)?

Derivative Estimation in Other Causal Contexts: Can we generalize our
derivative estimators to other causal estimands:

instantaneous causal effect 4K [Y(#)|S = s] (Stolzenberg, 1980);

direct and indirect effects in mediation analysis (Huber et al., 2020; Xu et al., 2021)?

(D)
@A@

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 37/38



Thank you!

More details can be found in

[1] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous
Treatments. arXiv preprint, 2025. https://arxiv.org/abs/2501.06969.

All the code and data are available at
hhttps://github.com/zhangyk8/npDRDeriv.

Python Package: npDoseResponse.
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Detailed Regularity Assumptions

Assumption (Differentiability of the conditional mean outcome function)

Forany (t,s) € T x Sand u(t,s) = E(Y|T =t,S = s), it holds that
u(t,s) is at least four times continuously differentiable with respect to t.

w(t, s) and all of its partial derivatives are uniformly bounded on T x S.

Yikun Zhang Doubly Robust Inference on Causal Derivative Effects 5/12



Detailed Regularity Assumptions

Let J be the support of the joint density p(t, s).

Assumption (Differentiability of the density functions)

Forany (t,s) € J, it holds that

The joint density p(t, s) and the conditional density pr|s(t|s) are at least three times
continuously differentiable with respect to t.

p(t,s), pris(tls), psir(s|t), as well as all of the partial derivatives of p(t, s) and pr)s(t|s) are
bounded and continuous up to the boundary 87 .

The support T of the marginal density pr(t) is compact and pr(t) is uniformly bounded
away from 0 within T
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Detailed Regularity Assumptions

Assumption (Regular kernel conditions)

A kernel function K : R — [0, 00) is bounded and compactly supported on [—1, 1] with
Jr K(t)dt = 1 and K(t) = K(—t). In addition, it holds that

kj = Jp WK(u)du < 00 and v; := [ wK?(u)du < oo forall j = 1,2, ...

K is a second-order kernel, i.e., k&1 = 0 and k> > 0.

K= {t’ > (t'h_t)kl K (t';t) :teT,h >0,k =0, 1} is a bounded VC-type class of

measurable functions on R.

Assumption (Smoothness condition on S(t))

Forany é € Rand t € T, there exists an absolute constant Ay > 0 such that either (i)
“S(t) © (Aold]) C S(t+ 6)” for the support shrinking approach or (ii)
“Lay5/(t) C S(t +8)” for the level set approach.
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Self-Normalized IPW and DR Estimators

The self-normalizing technique can reduce the instability of IPW and DR estimators
(Kallus and Zhou, 2018):

Self-Normalized Estimators Under Positivity:

n( )< ()

n
enorm( ) _ GIPW(t) =1 PT\S(T |S:)
IPW Tt = T ,
1 L K(T> n K( h )
nh ]g ?T\S(Tj|5j) 2 ]éjl ’};ﬂs(T]‘\S}')
and
-~ - T:— T:—
2 s -0 (2 (5
norm _i=1 pris(TilSi
DR (t) - K(Tj7t> + az,ﬁ(t, Sl)
n i i=1
Koh S° ~— 2
2 j; pris(Tj15))
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Self-Normalized IPW and DR Estimators

Self-Normalized Estimators Without Positivity:

é Y (Tih*’)K(Tih*t) sl

egolrpmw( ) = GC,IPW(t) _ P(T3,8:)
L o k(5 ) Fesin o K)ot
h El PT;5) 2 El PTS)
and
g [riits)(ni50.5) (% )k (%) #etsin
enorm( ) i—=1 F(T,,S)
C,DR T\
o K(I) 7etsin
K2

+ [ Bt,s) - pelsl ds.
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Simulations Under the Positivity Condition

We generate i.i.d. observations {(Y;, T}, S;)}/_; from the following data-generating
model (Colangelo and Lee, 2020):

Y=12T+ T2+ TS +12¢7s+ e\/0.5 + Fan(S1), €~ N(0,1),
T = Fun(o) (3¢7S) = 0.5+ 0.75E, S =(S1,..,5)" ~ Na(0,%), E~N(0,1),
where
FN(O,l) is the CDF of N (0,1) and d = 20.

£ =(&,...&)" € R hasits entry ¢ = ]l forj=1,..,dand &; = 1, 8;; = 0.5 when
i—j|=1,and S = 0when |i —j| > 1fori,j=1,...,d.

The dose-response curve is given by m(t) = 1.2t + t?, and our parameter of interest
is the derivative effect curve 6(t) = 1.2 + 2t.
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Simulations for Estimating 8(¢) Under Positivity

Bias for 6(t)

RMSE for 6(t)

Coverage rates for 6(t)

n =500 n=1000 n=2000 n = 6000
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—— Bor(t) (RKS)

Comparisons between our proposed estimators and the finite-difference approaches
by Colangelo and Lee (2020) (“CL20”) under positivity and with 5-fold cross-fitting

across various sample sizes.
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Simulations for Estimating 8(¢) Under Positivity

Bias for 6(t)

RMSE for 6(t)

Coverage rates for 6(t)
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Comparisons between our proposed estimators and the finite-difference approaches
by Colangelo and Lee (2020) (“CL20”) under positivity and without cross-fitting
across various sample sizes.
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