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Cosmic Web is a large-scale network structure revealing that the matter in our
Universe is not uniformly distributed (Bond et al., 1996).

� Large scale: 1 Mpc � 3:26 light-years.
� Cause: the anisotropic collapse of matter in gravitational instability scenarios at

the early stage of the Universe (Zel’Dovich, 1970).

Figure: Visualization of Cosmic Web (credited to the millennium simulation project (Springel
et al., 2005)).
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Cosmic web consists of four distinct components (Libeskind et al., 2018):

�Massive galaxy clusters (or nodes);

� Interconnected filaments;

�Two-dimensional tenuous sheets=walls;

)
on which matter concentrates.

around � Vast and near-empty voids.

Figure: Characteristics of Cosmic Web (credited to the millennium simulation).

Key Characteristics of Cosmic Web
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We will focus on detecting the (one-dimensional) cosmic filaments, because

� They connect complexes of super-clusters (Lynden-Bell et al., 1988).

� They contain information about the global cosmology and the nature of dark
matter (Zhang et al., 2009; Tempel et al., 2014).

� The trajectory of cosmic microwave background light can be distorted due to
cosmic filaments, creating the weak lensing effect.

Figure: Illustration of the bending trajectory of CMB lights (credit to Siyu He, Shadab Alam,
Wei Chen, and Planck/ESA; see He et al. (2018) for details).
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� The filamentary structures are overwhelmingly complex (Cautun et al., 2013):
� Lack of structural symmetries,
� Uncertainty in measuring its connectivity,
� Intrinsic multi-scale nature, etc.

Figure: A view of the present-day cosmic web 300 million light-years across, as modeled by
IllustrisTNG (Vogelsberger et al., 2014).

▶ There are no universal and mathematically rigorous definitions of cosmic filament!

Challenges in Detecting Cosmic Filaments
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1 Review existing approaches for cosmic web detection and discuss their drawbacks.

2 Introduce our cosmic filament model, which formulates cosmic filaments as the
directional density ridges on a celestial sphere.

3 Discuss directional density ridges from both statistical and computational
perspectives:

� Establish the statistical consistency of estimating the true density ridges with
directional kernel density estimator (KDE).

� Estimate the directional density ridges via our proposed Directional Subspace
Constrained Mean Shift (DirSCMS) algorithm.

� Establish the linear convergence properties of our DirSCMS algorithm.

4 Apply our DirSCMS algorithm to the galaxy observations in the Sloan Digital Sky
Survey (SDSS-IV; Ahumada et al. 2020) and construct a cosmic web catalog.

Outline of Today’s Talk

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 6/38



1 Review existing approaches for cosmic web detection and discuss their drawbacks.

2 Introduce our cosmic filament model, which formulates cosmic filaments as the
directional density ridges on a celestial sphere.

3 Discuss directional density ridges from both statistical and computational
perspectives:

� Establish the statistical consistency of estimating the true density ridges with
directional kernel density estimator (KDE).

� Estimate the directional density ridges via our proposed Directional Subspace
Constrained Mean Shift (DirSCMS) algorithm.

� Establish the linear convergence properties of our DirSCMS algorithm.

4 Apply our DirSCMS algorithm to the galaxy observations in the Sloan Digital Sky
Survey (SDSS-IV; Ahumada et al. 2020) and construct a cosmic web catalog.

Outline of Today’s Talk

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 6/38



1 Review existing approaches for cosmic web detection and discuss their drawbacks.

2 Introduce our cosmic filament model, which formulates cosmic filaments as the
directional density ridges on a celestial sphere.

3 Discuss directional density ridges from both statistical and computational
perspectives:

� Establish the statistical consistency of estimating the true density ridges with
directional kernel density estimator (KDE).

� Estimate the directional density ridges via our proposed Directional Subspace
Constrained Mean Shift (DirSCMS) algorithm.

� Establish the linear convergence properties of our DirSCMS algorithm.

4 Apply our DirSCMS algorithm to the galaxy observations in the Sloan Digital Sky
Survey (SDSS-IV; Ahumada et al. 2020) and construct a cosmic web catalog.

Outline of Today’s Talk

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 6/38



1 Review existing approaches for cosmic web detection and discuss their drawbacks.

2 Introduce our cosmic filament model, which formulates cosmic filaments as the
directional density ridges on a celestial sphere.

3 Discuss directional density ridges from both statistical and computational
perspectives:

� Establish the statistical consistency of estimating the true density ridges with
directional kernel density estimator (KDE).

� Estimate the directional density ridges via our proposed Directional Subspace
Constrained Mean Shift (DirSCMS) algorithm.

� Establish the linear convergence properties of our DirSCMS algorithm.

4 Apply our DirSCMS algorithm to the galaxy observations in the Sloan Digital Sky
Survey (SDSS-IV; Ahumada et al. 2020) and construct a cosmic web catalog.

Outline of Today’s Talk

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 6/38



Previous Works on Cosmic Filament Detection
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In astronomical survey data, the observed objects (or galaxies) are recorded as:

f(�1; �1;Z1); :::; (�n; �n;Zn)g ;

where, for i = 1; :::;n,
� �i 2 [0; 360�) is the right ascension (RA), i.e., celestial longitude,
� �i 2 [�90�; 90�] is the declination (DEC), i.e., celestial latitude,
� Zi 2 (0;1) is the redshift value, i.e., measuring its distance to the Earth.

Figure: Illustration of RA and DEC (Image Courtesy of Wikipedia).

Observational Data for Filament Detection
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In astronomical survey data, the observed objects (or galaxies) are recorded as
f(�1; �1;Z1); :::; (�n; �n;Zn)g.

The existing methods for detecting cosmic filaments from survey data can be
classified into the following two categories:

� 3D methods: Convert f(�i; �i;Zi)g
n
i=1 to their Cartesian coordinates as

Xi = d(Zi) cos�i cos �i; Yi = d(Zi) sin�i cos �i; Zi = d(Zi) sin �i;

where d(�) is a distance transforming function; see Tempel et al. (2014) for details.

� 2D methods: Slice the Universe into thin redshift slices (Chen et al., 2015b; Duque
et al., 2022).

▶ Note: Our method can easily switch between the above two categories.

Previous Works of Filament Detection on Survey Data
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Figure: Illustration of slicing the Universe (credit to Laigle et al. 2018).

The tomographic filament detection has its own advantages over 3D methods:
� It controls the redshift distortions along the line-of-sight direction (i.e., the

finger-of-god effect).
� The measurement error in one slice will not propagate to other slices.
� It helps reduce computational cost...

2D Methods: Slicing the Universe
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The slices (�Z = 0:005) in the survey data are not some flat 2D planes, but some
spherical shells, which have a nonlinear curvature!
� Recall that the locations of astronomical objects in a slice are recorded by
f(�i; �i)g

n
i=1 on a celestial sphere 
2 =

n
x 2 R3 : jjxjj2 = 1

o
.

(a) Planned eBOSS coverage of the Universe
(credit to M. Blanton and SDSS)

(b) BOSS/eBOSS Spectroscopic Footprint as of
DR16 (credit to SDSS)

Caveats of Slicing the Universe
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Setup: Suppose that we want to recover the true ring/filament structure across the
North and South pole of a unit sphere given some noisy data points from it.

Figure: Noisy observations (red points) and the underlying true ring/filament structure (blue
line).

Why can’t we ignore the spherical geometry?
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The background contour plots are kernel density estimators on the flat plane
[�90�; 90�]� [0�; 360�) and unit sphere 
2 =

n
x 2 R3 : jjxjj2 = 1

o
, respectively.

(a) Euclidean SCMS Method (ignoring
the spherical geometry).

(b) Directional SCMS Method.

� SCMS: subspace constrained mean shift (Ozertem and Erdogmus, 2011).

Why can’t we ignore the spherical geometry?
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(a) Slicing the Universe. (b) Positioning of the observed galaxy.

▶ Research Question: How do we model and estimate the cosmic filaments based
on the observed galaxies in each (redshift) spherical slice?

Importance of Modeling Cosmic Web Under Spherical Geometry
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Cosmic Filament Model: Directional Density
Ridges
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▶ Fact: The cosmic filaments are 1D curves tracing over the high-density regions of
matter (or galaxy) density field.

▶ Our Model: (Directional) density ridges are generalized local maxima (within
some subspaces) of the underlying density function (on 
q =

n
x 2 Rq+1 : jjxjj2 = 1

o
).

Figure: Density ridge (lifted onto the underlying density function; Chen et al. 2015a)

Our Filament Model: Directional Density Ridges
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▶ Local Modes/Maxima of f on 
q =
n

x 2 Rq+1 : jjxjj2 = 1
o

:

M�Mode(f ) =
�

x 2 
q : grad f (x) = 0; �1(x) < 0
	
:

� grad f (x) is the Riemannian gradient andHf (x) is the Riemannian Hessian on 
q.

� �1(x) � � � � � �q(x) are (descending) eigenvalues ofHf (x) associated with
eigenvectors v1(x); :::;vq(x) that lies within the tangent space Tx.

▶ Density ridge on 
q (or directional density ridge) of f :

Rd � Ridge(f ) =
n

x 2 
q : Vd(x)Vd(x)Tgrad f (x) = 0; �d+1(x) < 0
o
;

where Vd(x) =
�
vd+1(x); :::;vq(x)

�
2 R(q+1)�(q�d) consists of the last q� d eigenvectors

ofHf (x) within Tx.

Definition of Directional Density Ridges
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We first estimate the density function f on 
q via the directional KDE (Hall et al.,
1987; Bai et al., 1988; García-Portugués, 2013) as:

bfh(x) = CL;q(h)
n

nX
i=1

L

 
1� xTXi

h2

!
;

� L : [0;1)! [0;1) is a directional kernel, i.e., a rapidly decaying nonnegative
function. (Example: von Mises kernel L(r) = e�r.)
� h > 0 is the bandwidth parameter, and CL;q(h) is a normalizing term.

(a) fvMF;2(x;���; �) with ��� = (0; 0; 1) and � = 4:0. (b) 2
5 � fvMF;2(x;���1; 5) + 3

5 � fvMF;2(x;���2; 5)
with ���1 = (0; 0; 1); ���2 = (1; 0; 0).

Estimation of Directional Density Ridges
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The directional KDE bfh is useful because its plug-in estimators

cM =
n

x 2 
q : gradbfh(x) = 0; b�1(x) < 0
o

and bRd =
n

x 2 
q : bVd(x)bVd(x)Tgradbfh(x) = 0; b�d+1(x) < 0
o

approachM andRd in a statistically consistent way (Theorem 6 in Zhang and Chen
2021 and Theorem 4.1 in Zhang and Chen 2022):

� Haus
�
M; cM�

= O(h2) + OP

�q
1

nhq+2

�
; as h! 0 and nhq+2 !1,

� Haus
�
Rd; bRd

�
= O(h2) + OP

�q
j log hj
nhq+4

�
; as h! 0 and nhq+6

j log hj !1,

where Haus(A;B) = max

(
r > 0 : sup

x2A
d(x;B); sup

y2B
d(y;A)

)
:

Statistical Consistency of Directional Density Ridge Estimation
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We generalize the traditional subspace constrained mean shift algorithm Ozertem
and Erdogmus (2011) in RD to estimate bRd in practice as the directional subspace
constrained mean shift (DirSCMS) algorithm (Section 4.2 in Zhang and Chen 2022):

bx(t+1)  bx(t) + bVd(bx(t))bVd(bx(t))T �
rbfh(bx(t))������rbfh(bx(t))������

2

and bx(t+1)  
bx(t+1)����bx(t+1)

����
2
;

for t = 0; 1; :::.

V̂ d(x̂
(t))V̂ d(x̂

(t))T∇f̂h(x̂
(t))

x̂(t)

x̂(t+1)∣∣∣∣∇f̂h(x̂(t)
)
∣∣∣∣

2
· x̂(t)

Essentially, this is a subspace constrained gradient ascent algorithm on 
q, for which
we establish the linear convergence results in Section 4.3 of Zhang and Chen (2022).

Algorithmic Estimation of Directional Density Ridges
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: The underlying circle (blue curve) and sampled points (gray dots) on 
2.

DirSCMS Algorithm: Simulation Study
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 0.

DirSCMS Algorithm: Simulation Study
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 1.

DirSCMS Algorithm: Simulation Study
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 2.

DirSCMS Algorithm: Simulation Study

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 21/38



We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 4.

DirSCMS Algorithm: Simulation Study
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 8.

DirSCMS Algorithm: Simulation Study
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We simulate 2000 data points from a circle on 
2 with additive Gaussian noises
N (0; 0:12) on their Cartesian coordinates and L2 normalization.

Figure: Directional SCMS at Step 24 (converged).

DirSCMS Algorithm: Simulation Study
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The observed galactic data f(�i; �i; zi)g
n
i=1 � 
2 � R+ are directional-linear, and the

density ridges in 
2 � R+ (Zhang and Chen, 2025) can also be estimated as:
� Density estimation at (x; z) 2 
q � R (García-Portugués et al., 2015):

bfh(x; z) = CL(h1)

nh2

nX
i=1

L

 
1� xTXi

h2
1

!
K
�

z� Zi

h2

�
:

� Ridge-Finding via SCMS algorithm on y(t) = (x(t); z(t)) as:

y(t+1)  y(t) + � � bVd(y(t))bVd(y(t))TH�1�(y(t)) with

�(y) = (�x(x; z);�z(x; z))T =

0BB@
nP

i=1
XiL0

�
1�XT

i x(t)

h2
1

�
K
�

z(t)
�Zi

h2

�
nP

i=1
L0
�

1�XT
i x(t)

h2
1

�
K
�

z(t)
�Zi

h2

� � x;

nP
i=1

ziL
�

1�XT
i x(t)

h2
1

�
K0

�
z(t)

�Zi
h2

�
nP

i=1
L
�

1�XT
i x(t)

h2
1

�
K0

�
z(t)

�Zi
h2

� � z

1CCA :

▶ Note: A naive generalization of SCMS algorithm z(t+1)  z(t) + bVd(z(t))bVd(z(t))T�(z(t)) plus standardization as

with pure Euclidean/directional data does not work (Zhang and Chen, 2025)!

An Extension to Directional-Linear Product Spaces
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We sample 1000 observations on a spiral curve with additive Gaussian noises
N (0; 0:22) to their angular-linear coordinates.
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(a) Simulated data points.
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(b) Euclidean SCMS.
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(c) Directional-linear SCMS.

▶ Our directional-linear SCMS algorithm is stabler than its Euclidean prototype.

Filament Detection in the Directional-Linear Space
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All of our proposed methods are encapsulated in a Python package called
SCONCE-SCMS (Spherical and CONic Cosmic wEb finder with the extended
SCMS algorithms; Zhang et al. 2022).

� Python Package Index: https://pypi.org/project/sconce-scms/.
� Documentation: https://sconce-scms.readthedocs.io/en/latest/.

Python Implementation: SCONCE-SCMS
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SDSS-IV Cosmic Web Catalog
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Step 1 (Slicing the Universe): Partition the redshift range into 325 spherical slices
based on the comoving distance �L = 20 Mpc.
� Within each slice, we consider the redshifts of galaxies to be the same so that the

galaxies are located on 
2.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 2 (Density Estimation): Estimate the galaxy density field within each spherical
slice by directional KDE.
� The bandwidth parameter is selected via a data-adaptive approach.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 27/38



Step 3 (Denoising): Remove the observations with low-density values.
� We keep at least 80% of the original galaxy data in the slice.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 4 (Laying Down the Mesh Points): We place a set of dense mesh points on the
interested region, which are the initial points of our DirSCMS iterations.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 5 (Thresholding the Mesh Points): We discard those mesh points with
low-density values and keep 85% of the original mesh points.
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 0).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 1).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 2).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 3).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 5).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Step 8).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on each remaining
mesh point until convergence.

Figure: DirSCMS Iterations (Final).
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Step 7 (Mode and Knot Estimation): We seek out the local modes and knots on the
filaments as cosmic nodes.

Figure: Nodes on the detected filaments.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data

Yikun Zhang Kernel Smoothing, Mean Shift, and Cosmic Web Detection 32/38



� The input data incorporate not only galaxy but also quasar (QSO) observations so
as to dive deeper into the Universe.
� We compute the uncertainty measure and other features for each detected

filamentary point.
� The final catalog is available at https://doi.org/10.5281/zenodo.6244866.
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In this talk, we discuss our method for estimating cosmic filament structures from
observed galactic data and its statistical theory.

1 The cosmic filaments are modeled by directional density ridges, which can be
consistently estimated by directional KDE.

2 We design an efficient algorithm (DirSCMS) to find the directional density ridges
in practical applications.

3 The cosmic web catalog based on our proposed method is publicly available.
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Along this line of research, we are planning to
� Leverage our cosmic filament catalog to identify cosmic voids and infer the precise

cosmology (Sánchez et al., 2016).

Figure: Simple void-finding algorithm (Sánchez et al., 2016).
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� Analyze if galaxy properties, such as stellar mass, color, and star formation rate,
are correlated with our detected cosmic web structures (Chen et al., 2017; Kotecha,
2020)...
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� Analyze if galaxy properties, such as stellar mass, color, and star formation rate,
are correlated with our detected cosmic web structures (Chen et al., 2017; Kotecha,
2020)...
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Thank you!
More details can be found in

[1] Y. Zhang and Y.-C. Chen. Kernel Smoothing, Mean Shift, and Their Learning Theory with
Directional Data. Journal of Machine Learning Research, 22(154):1–92, 2021.

https://arxiv.org/abs/2010.13523
[2] Y. Zhang and Y.-C. Chen. The EM Perspective of Directional Mean Shift Algorithm. arXiv preprint,

2021. https://arxiv.org/abs/2101.10058
[3] Y. Zhang and Y.-C. Chen. Linear Convergence of the Subspace Constrained Mean Shift Algorithm:
From Euclidean to Directional Data. Information and Inference: A Journal of the IMA, 12(1): 210-311, 2022.

https://arxiv.org/abs/2104.14977
[4] Y. Zhang and Y.-C. Chen. Mode and Ridge Estimation in Euclidean and Directional Product Spaces:

A Mean Shift Approach. Journal of Computational and Graphical Statistics, (just-accepted): 1-20, 2025.
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Assume tentatively that the directional function f is well-defined and smooth in
Rq+1 n f0g (or at least in an open neighborhood U � 
q).

� Riemannian gradient grad f (x) on 
q:

grad f (x) =
�

Iq+1 � xxT
�
rf (x);

where Iq+1 is the identity matrix in R(q+1)�(q+1).

� Riemannian HessianHf (x) on 
q (Zhang and Chen, 2021):

Hf (x) = (Iq+1 � xxT)
h
rrf (x)�rf (x)Tx � Iq+1

i
(Iq+1 � xxT):

Here, Iq+1 is the identity matrix in R(q+1)�(q+1), whilerf (x) and rrf (x) are total
gradient and Hessian in Rq+1.

Riemannian Gradient and Hessian on 
q
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Input:
� A directional data sample X1; :::;Xn � f (x) on 
q

� The order d of the directional ridge, smoothing bandwidth h > 0, and tolerance
level � > 0.
� A suitable meshMD � 
q of initial points.

Step 1: Compute the directional KDE bfh(x) = cL;q(h)
n

nP
i=1

L
�

1�xTXi
h2

�
on the meshMD.

Step 2: For each bx(0) 2MD, iterate the following DirSCMS update until convergence:

while

�����
����� nP
i=1

bVd(bx(0))bVd(bx(0))TXi � L0
�

1�XT
i bx(0)

h2

������
�����
2

> � do:

Detailed Procedures of DirSCMS Algorithm
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� Step 2-1: Compute the scaled version of the estimated Hessian matrix as:

nh2

cL;q(h)
Hbfh(bx(t)) = �

Iq+1 � bx(t) �bx(t)�T
� "

1
h2

nX
i=1

XiXT
i � L

00

 
1� XT

i bx(t)
h2

!

+
nX

i=1

XT
i bx(t)Iq+1 � L0

 
1� XT

i bx(t)
h2

!#�
Iq+1 � bx(t) �bx(t)�T

�
:

� Step 2-2: Perform the spectral decomposition on nh2

cL;q(h)
Hbfh �bx(t)� and computebVd(bx(t)) = h

vd+1(bx(t)); :::;vq(bx(t))i, whose columns are orthonormal eigenvectors
corresponding to the smallest q� d eigenvalues inside the tangent space Tbx(t) .
� Step 2-3: Update

bx(t+1)  bx(t) � bVd(bx(t))bVd(bx(t))T

2664
Pn

i=1 XiL0
�

1�XT
i bx(t)

h2

�
Pn

i=1 XiL0
�

1�XT
i bx(t)

h2

�
3775 :
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� Step 2-4: Standardize bx(t+1) as bx(t+1)  bx(t+1)

jjbx(t+1)jj2
.

Output: An estimated directional d-ridge bRd represented by the collection of
resulting points.
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Under some regularity conditions, we prove the following (Theorem 4.6 in Zhang
and Chen 2022):
1 R-Linear convergence of d(x(k);Rd) with f . When the step size � > 0 is sufficiently

small and the initial point x(0) lies within a small neighborhood of its limiting
point x� inRd,

d
�

x(k);Rd

�
� �k � d

�
x(0); x�

�
with � =

s
1�

��0

4
;

where �0 > 0 is the eigengap between the d-th and (d + 1)-th eigenvalues ofHf (x).
2 R-Linear convergence of d(bx(k);Rd) with bfh. When the step size � > 0 is sufficiently

small and the initial point bx(0) lies within a small neighborhood of x� inRd,

d
�

x(k);Rd

�
� �k � d

�
x(0); x�

�
+ O(h2) + OP

0@s j log hj
nhq+4

1A
with probability tending to 1, as h! 0 and nhq+4

j log hj ! 0.

Linear Convergence of Subspace Constrained Gradient Ascent on 
q
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� The linear convergence results can also be proved for the subspace constrained
gradient ascent method but under some stricter conditions (Zhang and Chen,
2022).

� The (directional) mean shift and SCMS algorithms can be viewed as variants of the
(subspace constrained) gradient ascent methods (on 
q) but with adaptive step
sizes.

� The step sizes can be made sufficiently small as the bandwidth h is small and the
sample size n is large, but also universally bounded away from 0 with respect to
the iteration number t.

Linear Convergence of Mean Shift and SCMS Algorithms
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Figure: Cosmic filament detection in the 3D (RA,DEC,Redshift) space with our
directional-linear SCMS algorithm.
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There are some potential drawbacks of detecting filaments with survey data in the
3D space:
� The determination of d(�) relies on complex cosmological models.
� The galaxy distribution is distorted along the line of sight due to the peculiar

velocities of galaxies (i.e., the so-called finger-of-god (Sargent and Turner, 1977) and
Kaiser (Kaiser, 1987) effects).

Figure: Redshift distortions along the line of sight (Kuchner et al., 2021).

� The number of galaxies varies across different redshift values, so applying 3D
approaches will be computationally intensive.

Drawback of 3D Methods
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