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▶ Study the causal effect of a treatment T 2 T on the outcome of interest Y 2 Y .

� The treatment variable T is binary, i.e., T = f0; 1g.
� Only one potential outcome, Y(1) or Y(0), can be observed for each individual.
� The common causal estimand is the average treatment effect E [Y(1)]� E [Y(0)].

Fundamental Problem of Causal Inference
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▶ We want to study the causal effects of PM2:5 levels on Cardiovascular Mortality
Rates (CMRs).

Biological pathways associated with particulate matter (PM) and cardiovascular
disease (Miller and Newby, 2020; Basith et al., 2022).

Motivation for Continuous Treatments
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The dataset contains the average annual cardiovascular mortality rates (CMRs) and
PM2:5 levels across n = 2132 U.S. counties from 1990 to 2010 (Wyatt et al., 2020a,b).

� The treatment variable T, i.e., the PM2:5 level at each county, is a quantitative
measure. In other words, it is not a binary but continuous variable!
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The common causal estimands under a binary treatment are
� E [Y(t)] = mean counterfactual outcome when we set T = t 2 f0; 1g.

� E [Y(1)]� E [Y(0)] = average treatment effect.

▶ Question: What are the counterparts of the above estimands under a continuous
treatment T 2 T � R ?

� t 7! m(t) := E [Y(t)] = (causal) dose-response curve.

� t 7! �(t) := m0(t) = d
dtE [Y(t)] = (causal) derivative effect curve.
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The goal of our study is to identify and estimate

t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Challenge: m(t) and �(t) are not pathwise differentiable (Bickel et al., 1998) and
cannot be estimated in the rate 1=

p
n.

Existing Approaches:1

1 Discretization: Divide the range of T into bins and assign observations accordingly.

Pros Allow direct applications of standard
methods for discrete treatments (e.g.,
the block-based diagnostics by Hirano
and Imbens 2004; Bia and Mattei 2008).

Cons Difficult to choose the cutoff points for
binning.

Cons Potentially lose useful information.

1Credits to Marco Carone for this nice categorization of existing approaches.
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The goal of our study is to identify and estimate

t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

2 Marginal Structural Model: Impose parametric structural assumptions on E [Y(t)]
(Robins et al., 2000; van der Laan and Robins, 2003; Neugebauer and van der Laan,
2007), e.g.,

m(t) = E [Y(t)] = �1 + �2 � t:

Pros Only need to estimate regression parameters �1; �2, which can achieve the parametric
rate of convergence.

Cons The parametric structural assumption could be violated!

Existing Approaches (Continued)
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The goal of our study is to identify and estimate

t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

3 Stochastic Interventions (Díaz-Muñoz and van der Laan, 2012; Haneuse and
Rotnitzky, 2013; Schindl et al., 2024):

� Incremental causal effect (Kennedy, 2019; Rothenhäusler and Yu, 2019):

E [Y(T + �)]� E [Y(T)] for some deterministic � > 0:

� Average derivative effect (Härdle and Stoker, 1989; Powell et al., 1989; Newey and
Stoker, 1993; Hines et al., 2023):

E [�(T)] = E

�
@

@t
E (YjT;S)

�
; where S 2 S � Rd is a covariate vector:

Pros These new estimands may have more realistic interpretations in the actual context.

Cons They quantify only the overall causal effects, not those at a specific level of interest.

Existing Approaches (Continued)
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The goal of our study is to identify and estimate

t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

4 Nonparametric Structural Assumptions:
� Shape constraint, e.g., monotonicity (Westling et al., 2020; Westling and Carone, 2020).

� Smoothness conditions, e.g., higher-order differentiability + localization techniques
(Kennedy et al., 2017; Kallus and Zhou, 2018; Colangelo and Lee, 2020; Bonvini and
Kennedy, 2022; Takatsu and Westling, 2024; Luedtke and Chung, 2024).

Pros Allow flexibility in estimating m(t) and �(t).

Cons Require estimating nuisance functions and/or tuning (hyper)parameters.

▶ Our works leverage smoothness conditions with kernel smoothing techniques.

Existing Approaches (Continued)
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The goal of our study is to identify and estimate

t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Assumption (Identification Condition)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

In randomized controlled trials (RCTs),

m(t) = E [Y(t)] = E (YjT = t) and �(t) =
d
dt
E [Y(t)] =

d
dt
E (YjT = t) :

� Estimating m(t) is to fit the regression function t 7! E(YjT = t) on f(Yi;Ti)gn
i=1.

� Recovering �(t) is a derivative estimation problem (Gasser and Müller, 1984).

Identification and Estimation in RCTs
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T Y

SRCTs

T Y

SObservational
Studies

Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability) Y(t) is conditionally independent of T given S for all t 2 T .

3 (Positivity) The conditional density satisfies pTjS(tjs) � pmin > 0 for all (t; s) 2 T � S .

m(t) = E [Y(t)] = E [E(YjT = t;S)] and �(t) =
d
dt
E [Y(t)]

(*)2

= E
�
@

@t
E(YjT = t;S)

�
:

� The positivity condition is required for �(t; s) = E (YjT = t;S = s) and
@
@t�(t; s) =

@
@tE (YjT = t;S = s) to be well-defined on T � S.

2Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Identification and Estimation in Observational Studies
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Assumption (Positivity Condition)

There exists a constant pmin > 0 such that pTjS(tjs) � pmin for all (t; s) 2 T � S .

▶ Positivity is a very strong assumption with continuous treatments!

T = sin(�S) + E; E � Uniform[�0:3; 0:3]; S � Uniform[�1; 1]; and E??S:

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

pT|S(t|s) = 0

Joint support of (T,S)

Note that pTjS(tjs) = 0 in the gray
regions, and the positivity condition fails.

An Example of the Positivity Violation
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PM2.5 level (µg m3)

2.5

5.0

7.5

10.0

Average PM2:5 levels from 1990 to 2010 in n = 2132 counties.

� T is PM2:5 level, and S consists of the county location and socioeconomic factors.

� Only one or several PM2:5 levels are available per county in the dataset, and the
positivity condition is violated!

PM2:5 Distribution at the County Level
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t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Review the existing estimators for m(t) via kernel smoothing.

2 Propose our doubly robust (DR) estimator for �(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR:

Without the positivity condition:

3 m(t) and �(t) are identifiable with a new extrapolation assumption satisfied by, e.g.,

Y(t) = �m(t) + �(S) + �: (1)

4 The usual IPW estimators for m(t) and �(t) are still biased even under model (1).

5 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Outline of Today’s Talk

Yikun Zhang Nonparametric Inference on Causal Effects of Continuous Treatments 14/40



t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Review the existing estimators for m(t) via kernel smoothing.

2 Propose our doubly robust (DR) estimator for �(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR:

Without the positivity condition:

3 m(t) and �(t) are identifiable with a new extrapolation assumption satisfied by, e.g.,

Y(t) = �m(t) + �(S) + �: (1)

4 The usual IPW estimators for m(t) and �(t) are still biased even under model (1).

5 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Outline of Today’s Talk

Yikun Zhang Nonparametric Inference on Causal Effects of Continuous Treatments 14/40



t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Review the existing estimators for m(t) via kernel smoothing.

2 Propose our doubly robust (DR) estimator for �(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR:

Without the positivity condition:

3 m(t) and �(t) are identifiable with a new extrapolation assumption satisfied by, e.g.,

Y(t) = �m(t) + �(S) + �: (1)

4 The usual IPW estimators for m(t) and �(t) are still biased even under model (1).

5 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Outline of Today’s Talk

Yikun Zhang Nonparametric Inference on Causal Effects of Continuous Treatments 14/40



t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Review the existing estimators for m(t) via kernel smoothing.

2 Propose our doubly robust (DR) estimator for �(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR:

Without the positivity condition:

3 m(t) and �(t) are identifiable with a new extrapolation assumption satisfied by, e.g.,

Y(t) = �m(t) + �(S) + �: (1)

4 The usual IPW estimators for m(t) and �(t) are still biased even under model (1).

5 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Outline of Today’s Talk

Yikun Zhang Nonparametric Inference on Causal Effects of Continuous Treatments 14/40



t 7! m(t) = E [Y(t)] and t 7! �(t) =
d
dt
E [Y(t)] for t 2 T :

Under the positivity condition:

1 Review the existing estimators for m(t) via kernel smoothing.

2 Propose our doubly robust (DR) estimator for �(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

(
)
;

DR:

Without the positivity condition:

3 m(t) and �(t) are identifiable with a new extrapolation assumption satisfied by, e.g.,

Y(t) = �m(t) + �(S) + �: (1)

4 The usual IPW estimators for m(t) and �(t) are still biased even under model (1).

5 Propose our bias-corrected IPW and DR estimators for m(t) and �(t).
� Has a novel connection to nonparametric support and level set estimation problems.

Outline of Today’s Talk

Yikun Zhang Nonparametric Inference on Causal Effects of Continuous Treatments 14/40



Part I: Nonparametric Inference on
m(t) and �(t) Under Positivity

This part is based on Sections 2 and 3 in [1]:

[1] Y. Zhang and Y.-C. Chen (2025). Doubly Robust Inference on Causal Derivative Effects for
Continuous Treatments. arXiv:2501.06969. https://arxiv.org/abs/2501.06969.
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability) Y(t) is conditionally independent of T given S for all t 2 T .

3 (Positivity) The conditional density satisfies pTjS(tjs) � pmin > 0 for all (t; s) 2 T � S .

Given that �(t; s) = E (YjT = t;S = s), we have

RA or G-computation:

8<:m(t) = E [Y(t)] = E [�(t;S)] ;

�(t) = d
dtE [Y(t)] = d

dtE [�(t;S)] = E
h
@
@t�(t;S)

i
:

IPW:

8<:m(t) = E [Y(t)] = lim
h!0

E
h

Y
pTjS(TjS) �

1
h K
�

T�t
h

�i
;

�(t) = d
dtE [Y(t)] = ???:

� K : R! [0;1) is a kernel function, e.g., K(u) =

8<:
1p
2�

exp
�
�u2

2

�
(Gaussian);

3
4(1� u2) � 1fjuj�1g (Parabolic):

� h > 0 is a smoothing bandwidth parameter.

Identification in Observational Studies Under Positivity
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Given the observed data f(Yi;Ti;Si)gn
i=1, there are three main strategies for estimating

m(t) = E [Y(t)] = E [�(t;S)] = lim
h!0

E

24 Y � K
�

T�t
h

�
h � pTjS(TjS)

35 :
1 RA Estimator (Robins, 1986; Gill and Robins, 2001):

bmRA(t) =
1
n

nX
i=1

b�(t;Si):

2 IPW Estimator (Hirano and Imbens, 2004; Imai and van Dyk, 2004):

bmIPW(t) =
1

nh

nX
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

� Yi:

3 DR Estimator (Kallus and Zhou, 2018; Colangelo and Lee, 2020):

bmDR(t) =
1

nh

nX
i=1

8<: K
�

Ti�t
h

�
bpTjS(TijSi)

� [Yi � b�(t;Si)] + h � b�(t;Si)

9=; :

Estimation of m(t) Under Positivity
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To estimate �(t) = d
dtE [Y(t)] = E

h
@
@t�(t;S)

i
from f(Yi;Ti;Si)gn

i=1, we could also have
three strategies:

1 RA Estimator:

b�RA(t) =
1
n

nX
i=1

b�(t;Si) with �(t; s) =
@

@t
�(t; s):

Question: How to generalize the IPW form m(t) = lim
h!0

E
�

Y�K( T�t
h )

h�pTjS(TjS)

�
to estimate �(t)?

2 IPW Estimator: Inspired by the derivative estimator in Mack and Müller (1989),
we propose

b�IPW(t) =
1
n

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

�
h2 � �2 � bpTjS(TijSi)

with �2 =

Z
u2 � K(u) du:

RA and IPW Estimators of �(t) Under Positivity
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The usual approach to construct a DR (or AIPW) estimator is as follows:

bmRA(t) =
1
n

nX
i=1

b�(t;Si) “+” bmIPW(t) =
1

nh

nX
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

� Yi

=) bmDR(t) =
1

nh

nX
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

� [Yi � b�(t;Si)] +
1
n

nX
i=1

b�(t;Si):

b�RA(t) =
1
n

nX
i=1

b�(t;Si) “+” b�IPW(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

� Yi =)

� b�AIPW;1(t) = 1
nh2

nP
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2�bpTjS(TijSi)

h
Yi � b�(t;Si)

i
+ 1

n

nP
i=1

b�(t;Si) ;

� b�AIPW;2(t) = 1
nh

nP
i=1

K
�

Ti�t
h

�
bpTjS(TijSi)

h
Yi

h��2

�
Ti�t

h

�
� b�(t;Si)

i
+ 1

n

nP
i=1

b�(t;Si) ; etc.

▶ Remark: All these AIPW estimators for �(t) are, at best, singly robust!!

Challenges of Deriving a DR Estimator for �(t)
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b�RA(t) =
1
n

nX
i=1

b�(t;Si) “+” b�IPW(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

� Yi =)

b�DR(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

h
Yi � b�(t;Si)� (Ti � t) � b�(t;Si)

i
| {z }

New IPW component

+
1
n

nX
i=1

b�(t;Si)| {z }
RA component

:

The “New IPW component” leverages a local polynomial approximation to push the
residual of the IPW component to (roughly) second order.

� Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds for this
form of b�DR(t) as h ! 0.

Doubly Robust Estimator for �(t) Under Positivity
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Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and

1 b�; b�; bpTjS are estimated on a dataset independent of f(Yi;Ti;Si)gn
i=1;

2 at least one of the model specification conditions hold:

� bpTjS(tjs) P! �pTjS(tjs) = pTjS(tjs) (conditional density model),

� b�(t; s) P! ��(t; s) = �(t; s) and b�(t; s) P! ��(t; s) = �(t; s) (outcome model);

3 sup
ju�tj�h

����bpTjS(ujS)� pTjS(ujS)
����

L2

�
jjb�(t;S)� �(t;S)jjL2

+ h
������b�(t;S)� �(t;S)

������
L2

�
= oP

�
1p
nh

�
,

we prove that

� pnh3
hb�DR(t)� �(t)

i
= 1p

n

nP
i=1

�h;t

�
Yi;Ti;Si; ��; ��; �pTjS

�
+ oP(1).

� pnh3
hb�DR(t)� �(t)� h2B�(t)

i
d! N (0;V�(t)).

Asymptotic Properties of b�DR(t)
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An asymptotically valid inference on �(t) = d
dtE [Y(t)] can be conducted through

p
nh3

hb�DR(t)� �(t)� h2 B�(t)
i

d! N (0;V�(t)) :

1 We estimate V�(t) = E
h
�2

h;t

�
Y;T;S; ��; ��; �pTjS

�i
with

�h;t

�
Y;T;S; ��; ��; �pTjS

�
=

�
T�t

h

�
K
�

T�t
h

�
p

h � �2 � �pTjS(TjS)
� �Y� ��(t;S)� (T � t) � ��(t;S)�

by bV�(t) = 1
n

nP
i=1

�2
h;t

�
Y;T;S; b�; b�; bpTjS

�
.

2 b�; b�; bpTjS can be estimated via sample-splitting or cross-fitting.

3 The explicit form of B�(t) is complicated, but h2 B�(t) is asymptotically negligible
when h = O

�
n�

1
5

�
.

� This order aligns with the outputs from usual bandwidth selection methods (Wand
and Jones, 1994; Wasserman, 2006).

Statistical Inference on �(t)
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Question:3 Do we have a nonparametric efficiency lower bound for b�DR(t)?

� t 7! �(t) := 	(P0)(t) is not pathwise differentiable (Bickel et al., 1998; Hirano and
Porter, 2012; Luedtke and van der Laan, 2016):

8t 2 T ; 9 fP� : � 2 Rg s.t. lim
�!0

	(P�)(t)�	(P0)(t)
�

does not exist:

� For a fixed h > 0, the smooth functional �(P0)(t) := E
�

Y�( T�t
h )K( T�t

h )
h2��2�pTjS(TjS)

�
is pathwise

differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

� Up to a shrinking bias O(h2), the efficient influence function for �(P0)(t) leads to

b�EIF(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):

▶ The asymptotic variances of b�DR(t) and b�EIF(t) are the same (or differing by O(h2))!

3I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for b�DR(t)
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nh2
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i=1

�
Ti�t

h

�
K
�

Ti�t
h

�
�2 � bpTjS(TijSi)

[Yi � b�(Ti;Si)] +
1
n

nX
i=1

b�(t;Si):
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Part II: Nonparametric Inference on
m(t) and �(t) Without Positivity

This part is based on Sections 4 and 5 in [1] and Sections 2, 3, and 4 in [2]:

[1] Y. Zhang and Y.-C. Chen (2025). Doubly Robust Inference on Causal Derivative Effects for
Continuous Treatments. arXiv:2501.06969. https://arxiv.org/abs/2501.06969.

[2] Y. Zhang, Y.-C. Chen, and A. Giessing (2024). Nonparametric Inference on Dose-Response Curves
Without the Positivity Condition. arXiv:2405.09003. https://arxiv.org/abs/2405.09003.
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t 2 T .

2 (Ignorability or Unconfoundedness) Y(t)??T
��S for all t 2 T .

3 (Positivity) pTjS(tjs) � pmin > 0 for all (t; s) 2 T � S .

The RA (or G-computation) formulae are given by

m(t) = E [Y(t)] = E [�(t;S)] and �(t) =
d
dt
E [Y(t)] = E

�
@

@t
�(t;S)

�
:

The IPW approaches also rely on the following identities:

lim
h!0

E

"
Y � K

�T�t
h

�
h � pTjS(TjS)

#
= E [�(t;S)] and lim

h!0
E

"
Y � �T�t

h

�
K
�T�t

h

�
�2 � h2 � pTjS(TjS)

#
= E

�
@

@t
�(t;S)

�
:

▶ Identification Issue: Without positivity, �(t; s) = E (YjT = t;S = s) is not
well-defined outside the support J � T � S of the joint density p(t; s).

Why Do We Need Positivity?
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Consider the additive confounding model (Paciorek, 2010; Schnell and
Papadogeorgou, 2020; Gilbert et al., 2023):

Y(t) = �m(t) + �(S) + � with E(�) = 0 and Var(�) > 0: (2)

� �m : T ! R; � : S ! R are unknown functions, while � 2 R is exogenous.
� m(t) = E [Y(t)] = �m(t) + E [�(S)] and �(t) = m0(t) = d

dtE [Y(t)] = �m0(t).

▶ Identification of �(t): Under model (2) and consistency, we have

�(t) = E
�
@

@t
�(t;S)

���T = t
�
:= �C(t) and E(Y) = E [m(T)] :

▶ Identification of m(t): By the fundamental theorem of calculus,

m(t) = E
�
Y +

Z u=t

u=T
�C(u) du

�
= E(Y)+E

�Z u=t

u=T
E
�
@

@t
�(T;S)

���T = u
�

du
�

for any t 2 T :

▶ Drawback of (2): The treatment effect is homogeneous for any S = s 2 S.

Key Example: Additive Confounding Model
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m(t) = E
�
Y +

Z u=t

u=T
�(u) du

�
and �(t) = E

�
@

@t
�(t;S)

���T = t
�
=

Z
@

@t
�(t; s) dFSjT(sjt):

▶ RA (Integral) Estimator Without Positivity:

bmC;RA(t) =
1
n

nX
i=1

"
Yi +

Z et=t

et=Ti

b�C;RA(et) det# and b�C;RA(t) =
Z b�(t; s) dbFSjT(sjt):

� �(t; s) = @
@t�(t; s)

fitted by
↢ (partial) local polynomial regression (Fan and Gijbels,

1996) or neural networks (Paszke et al., 2017; Blondel and Roulet, 2024).

� FSjT(sjt)
fitted by
↢ Nadaraya-Watson conditional CDF estimator (Hall et al., 1999).

� Compute the integral via a fast Riemann sum approximation (Zhang et al., 2024).

� Establish the consistency of nonparametric bootstrap for bmC;RA(t) and b�C;RA(t).

Estimation of m(t) and �(t) Without Positivity
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Question: How about IPW and DR estimators of �(t) (and m(t)) without positivity?

� For identification, we assume Y(t) = �m(t) + �(S) + �.

� Recall the standard (oracle) IPW estimators of m(t) and �(t):

emIPW(t) =
1

nh

nX
i=1

Yi � K
�

Ti�t
h

�
pTjS(TijSi)

and e�IPW(t) =
1

nh2

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

�
�2 � pTjS(TijSi)

:

Proposition (Proposition 2 in Zhang and Chen 2025)

lim
h!0

E [emIPW(t)] = �m(t) � �(t) + !(t) 6= m(t); with �(t) = P (S 2 S(t)) ;

lim
h!0

E
he�IPW(t)

i
=

8<:�m0(t) � �(t)
1

6= �(t); and !(t) = E
h
�(S)1fS2S(t)g

i
:

▶ Key Issue: The conditional support S(t) of pSjT(sjt) and the marginal support S of
pS(s) are different under the violations of positivity!!

Estimation Biases of IPW Estimators Without Positivity
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lim
h!0

E
he�IPW(t)

i
= lim

h!0
E

24Y
�

T�t
h

�
K
�

T�t
h

�
h2 � �2 � pTjS(TjS)

35 =

8<:�m0(t) � �(t)
1

6= �(t);

where �(t) = P (S 2 S(t)) and !(t) = E
h
�(S)1fS2S(t)g

i
.

1 We first want to disentangle �(t) = �m0(t) from the bias term:

E

"
Y � �T�t

h

�
K
�T�t

h

� � pSjT(Sjt)
h2 � �2 � pTjS(TjS) � pS(S)

#
= �m0(t) + O(h2)

+

Z
R

E

n
[ �m(t + uh) + �(S)]

�
1fS2S(t+uh)nS(t)g � 1fS2S(t)nS(t+uh)g

� ���T = t
o

u � K(u) du| {z }
Non-vanishing Bias

:

SS(t+ uh)

S(t)
S(t)∆S(t+ uh)

S(t) ∩ S(t+ uh)

Bias-Corrected IPW Estimator for �(t)
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E

24Y �
�

T�t
h

�
K
�

T�t
h

�
pSjT(Sjt)

h2 � �2 � pTjS(TjS) � pS(S)

35 = �m0(t) + O(h2) + “Non-vanishing Bias”:

2 We replace pSjT(sjt) with a �-interior conditional density p�(sjt) so that
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SS(t+ δ)
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Question: How can we find a �-interior conditional density p�(sjt)?

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

Lζ(t)

Level set approach

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

S(t)⊖ ζ

ζ

Support shrinking approach

S(t)	 � =

�
s 2 S(t) : inf

x2@S(t)
jjs� xjj2 � �

�
,

p�(sjt) =
pSjT(sjt) � 1fs2S(t)	�gR
S(t)	� pSjT(s1jt) ds1

:

L�(t) =
n

s 2 S(t) : pSjT(sjt) � �
o

,

p�(sjt) =
pSjT(sjt) � 1fs2L�(t)gR
L�(t) pSjT(s1jt) ds1

:

�-Interior Conditional Density
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▶ Bias-Corrected IPW Estimator Without Positivity:

b�C;IPW(t) =
1

nh2

nX
i=1

Yi �
�

Ti�t
h

�
K
�

Ti�t
h

� bp�(Sijt)
�2 � bp(Ti;Si)

;

� bp(t; s); bp�(sjt) are estimators of p(t; s); p�(sjt) and � = 0:5 �max
�bpSjT(Sijt) : i = 1; :::;n

	
.

▶ Bias-Corrected DR Estimator Without Positivity:

b�C;DR(t) =
1

nh2

nX
i=1

�
Ti�t

h

�
K
�

Ti�t
h

� bp�(Sijt)
�2 � bp(Ti;Si)

h
Yi � b�(t;Si)� (Ti � t) � b�(t;Si)

i
| {z }

IPW component

+

Z b�(t; s) � bp�(sjt) ds| {z }
RA component

:

▶ Remark: Practically, the RA estimators b�C;RA(t) and bmC;RA(t) are recommended!

Bias-Corrected IPW and DR Estimators of �(t)
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Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and

1 b�; b�; bp; bp� are estimated on a dataset independent of f(Yi;Ti;Si)gn
i=1;

2
p

nh jjbp�(Sjt)� �p�(Sjt)jjL2
= oP(1) with bp�(sjt) P! �p�(sjt);

3 at least one of the model specification conditions hold:

� bp(t; s) P! �p(t; s) = p(t; s) (joint density model),

� b�(t; s) P! ��(t; s) = �(t; s) and b�(t; s) P! ��(t; s) = �(t; s) (outcome model);

4 sup
ju�tj�h

jjbp(u;S)� p(u;S)jjL2

�
jjb�(t;S)� �(t;S)jjL2

+ h
������b�(t;S)� �(t;S)

������
L2

�
= oP

�
1p
nh

�
,

we prove that

� pnh3
hb�C;DR(t)� �(t)

i
= 1p

n

nP
i=1

�C;h;t

�
Yi;Ti;Si; ��; ��; �pTjS

�
+ oP(1).

� pnh3
hb�C;DR(t)� �(t)� h2 � BC;�(t)

i
d! N (0;VC;�(t)).

Asymptotic Properties of b�C;DR(t) Without Positivity
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Application: PM2:5 on CMR

This part is based on Section 5.3 in [2]:

[2] Y. Zhang, Y.-C. Chen, and A. Giessing (2024). Nonparametric Inference on Dose-Response Curves
Without the Positivity Condition. arXiv:2405.09003. https://arxiv.org/abs/2405.09003.

All the code and data are available at
https://github.com/zhangyk8/npDoseResponse/tree/main.

Python Package: npDoseResponse and R Package: npDoseResponse.
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1 The dataset (Wyatt et al., 2020a,b) contains the average annual CMRs (Y) and
PM2:5 levels (T) across n = 2132 U.S. counties over 1990-2010.

2 The covariate vector S 2 R10 consists of two parts:
� 2 spatial confounders: latitude and longitude of each county.
� 8 county-level socioeconomic factors acquired from the US census.

3 Focus on the values of PM2:5 between 2.5 µg=m3 and 11.5 µg=m3 to avoid
boundary effects (Takatsu and Westling, 2024).

PM2:5 and CMRs Data Recap
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Shaded areas: 95% pointwise confidence intervals; Regions between dashed lines: 95% uniform confidence bands.
� We compare three models:

1 Regress Y on T alone via local quadratic regression.
2 Regress Y on T with spatial locations.
3 Regress Y on T with both spatial and socioeconomic covariates.

� For model 3, the increasing trends are significant when PM2:5 < 8 µg=m3.

Effect of PM2:5 on the Cardiovascular Mortality Rate (CMR)
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Discussion
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We study nonparametric inference on m(t) = E [Y(t)] and �(t) = d
dtE [Y(t)], t 2 T � R.

1 Under the positivity condition:
� We propose b�DR(t) with standard nonparametric consistency and efficiency guarantee:

p
nh3

hb�DR(t)� �(t)� h2B�(t)
i

d! N (0;V�(t)) :

2 Without the positivity condition:
� Our key technique relies on two pillars in calculus:

�(t) = E

�
@

@t
�(t;S)

���T = t
�

| {z }
Differentiation

and m(t) = E

�
Y +

Z u=t

u=T
�(u) du

�
| {z }

Integration

:

� Our bias-corrected IPW and DR estimators reveal interesting connections to
nonparametric level set estimation problems (Bonvini et al., 2023):

Causal Inference () Geometric Data Analysis:

Punchlines of Today’s Talk
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1 Debiasing Doubly Robust Estimators: Can we debias our DR estimators b�DR(t)
and b�C;DR(t) through explicit bias estimation (Calonico et al., 2018; Cheng and
Chen, 2019; Takatsu and Westling, 2024) or calibration (van der Laan et al., 2024)?

2 Violation of Ignorability: Can we conduct sensitivity analysis on unmeasured
confounding (Chernozhukov et al., 2022a)?

3 Mediation Analysis: Can we generalize our strategies for the estimation of direct
and indirect causal effects (Huber et al., 2020; Xu et al., 2021)?

S

T

M

Y

Ongoing Works and Future Directions
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Thank you!
More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response Curves Without
the Positivity Condition. arXiv preprint, 2024. https://arxiv.org/abs/2405.09003.

[2] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous
Treatments. arXiv preprint, 2025. https://arxiv.org/abs/2501.06969.

All the code and data are available at
https://github.com/zhangyk8/npDoseResponse/tree/main.

Python Package: npDoseResponse and R Package: npDoseResponse.

Check out my other works at https://zhangyk8.github.io/.
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1 Order q (Partial) Local Polynomial Regression (Fan and Gijbels, 1996): Letb���(t; s) 2 Rq+1 and b���(t; s) 2 Rd be the minimizer of

argmin
(���;���)T2Rq+1+d

nX
i=1

24Yi �
qX

j=0

�j(Ti � t)q �
dX

`=1

�`(Si;` � s`)

352

KT

�
Ti � t

h

�
KS

�
Si � s

b

�
:

� KT : R! [0;1);KS : Rd ! [0;1) are two symmetric kernel functions, and h; b > 0 are
smoothing bandwidth parameters.

� The second component b�2(t; s) := b�(t; s) is a consistent estimator of �(t; s) = @
@t�(t; s).

2 Nadaraya-Watson Conditional CDF Estimator for FSjT(sjt) (Hall et al., 1999):

bFSjT(sjt) = bPℏ(sjt) =
Pn

i=1 1fSi�sg � �KT

�
Ti�t
ℏ

�
Pn

j=1
�KT

�Tj�t
ℏ

� :

� �KT : R! [0;1) is a kernel function and } > 0 is its smoothing bandwidth parameter.

Estimation of Nuisance Functions
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3 Kernel Smoothing Methods for Estimating pTjS(tjs):
� Method 1 (Kernel density estimation on residuals): If T = gS(S) + gE(E) with
E [gE(E)jS] = 0, then we can estimate gS(s) = E (TjS = s) via any machine learning
method to obtain

bpTjS(tjs) = 1
nhe

nX
i=1

Ke

�
t� bgS(s)� (Ti � bgS(Si))

he

�
;

where Ke : R! [0;1) is a kernel function and he > 0 is a bandwidth parameter.

� Method 2 (Regression on kernel-smoothed outcomes (RKS) in Chernozhukov et al. 2022b):
Let g(t; s) = E

h
Kr

�
T�t
hr

� ��S = s
i
. We obtain bpTjS(tjs) = bg(t; s) by regressingn

Kr

�
Ti�t

hr

�on

i=1
against fSign

i=1 via any machine learning method. Note that

g(t; s) = E

�
Kr

�
T � t

hr

� ���S = s
�
! pTjS(tjs) as hr ! 0;

where Kr : R! [0;1) is a kernel function and hr > 0 is a bandwidth parameter.

Estimation of Nuisance Functions
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Combining two nuisance function estimators b�(t; s) and bFSjT(sjt), we derive our
localized RA derivative estimator of �(t) with kernel smoothing as:

b�C;RA(t) =
Z b�(t; s) dbPℏ(sjt) =

Pn
i=1

b�(t;Si) � �KT

�
Ti�t
ℏ

�
Pn

j=1
�KT

�Tj�t
ℏ

� :

Our RA integral estimator takes the form

bmC;RA(t) =
1
n

nX
i=1

"
Yi +

Z et=t

et=Ti

b�C;RA(et) det# :
� bmC;RA(t), under our kernel smoothing-based estimators, is a linear smoother.
� We can also fit �(t; s) via neural networks and obtain an estimator for �(t; s) via

automatic differentiation in PyTorch (Paszke et al., 2017).

▶ Issue: The integral in bmC;RA(t) could be analytically difficult to compute.

Localized RA Derivative Estimator for �(t) Without Positivity
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Our integral estimator takes the form

bmC;RA(t) =
1
n

nX
i=1

"
Yi +

Z et=t

et=Ti

b�C;RA(et) det# :
▶ Riemann Sum Approximation: Let T(1) � � � � � T(n) be the order statistics of
T1; :::;Tn and �j = T(j+1) � T(j) for j = 1; :::;n� 1.

� Approximate bmC;RA(T(j)) for each j = 1; :::;n as:

bmC;RA(T(j)) � 1
n

nX
i=1

Yi +
1
n

n�1X
i=1

�i

h
i � b�C;RA(T(i))1fi<jg � (n� i) � b�C;RA(T(i+1))1fi�jg

i
:

� Evaluate bmC;RA(t) at any t 2
h
T(j);T(j+1)

i
by a linear interpolation betweenbmC;RA(T(j)) and bmC;RA(T(j+1)).

� The approximation error OP

�
1
n

�
is asymptotically negligible.

Fast Computing Algorithm for the Integral Estimator
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1 Compute bmC;RA(t) on the original data f(Yi;Ti;Si)gn
i=1.

2 Generate B bootstrap samples
n�

Y�(b)
i ;T�(b)i ;S�(b)i

�on

i=1
by sampling with

replacement and compute bm�(b)
C;RA(t) for each b = 1; :::;B.

3 Let � 2 (0; 1) be a pre-specified significance level.

� For pointwise inference at t0 2 T , calculate the 1� � quantile ��1��(t0) of

fD1(t0); :::;DB(t0)g, where Db(t0) =
���bm�(b)

C;RA(t0)� bmC;RA(t0)
��� for b = 1; :::;B.

� For uniform inference on m(t), compute the 1� � quantile ��1�� of fDsup;1; :::;Dsup;Bg,

where Dsup;b = sup
t2T

���bm�(b)
C;RA(t)� bmC;RA(t)

��� for b = 1; :::;B.

4 Define the 1� � confidence interval for m(t0) as:� bmC;RA(t0)� ��1��(t0); bmC;RA(t0) + ��1��(t0)
�

and the simultaneous 1� � confidence band for every t 2 T as:� bmC;RA(t)� ��1��; bmC;RA(t) + ��1��
�
:

Nonparametric Bootstrap Inference
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Let fZign
i=1 be a sequence of i.i.d. random variables independent of the observed

data f(Yi;Ti;Si)gn
i=1 with E(Zi) = Var(Zi) = 1 and sub-exponential tails (Fan et al.,

2022; Colangelo and Lee, 2020).

1 Sample B different i.i.d. datasets
n

Z(b)
i

on

i=1
; b = 1; :::;B.

2 Compute the bootstrap DR estimators for �(t) for b = 1; :::;B as:

b�(b)�DR (t) =
1

nh

nX
i=1

Z(b)
i

8<:
�

Ti�t
h

�
K
�

Ti�t
h

�
h � �2 � bpTjS(TijSi)

h
Yi � b�(t;Si)� (Ti � t) � b�(t;Si)

i
+ h � b�(t;Si)

9=; :

3 Let bQ(1� � ) be the (1� � ) quantile of the sequence

(
sup
t2T

p
nh3

����b�(b)�
DR (t)�b�DR(t)pbV�(t)

����
)B

b=1

.

4 The uniform (1� � )-level confidence band of �(t) is given by24b�DR(t)� bQ(1� � )

s bV�(t)
nh3

35 :

Multiplier Bootstrap With b�DR(t) for Uniform Inference
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▶ The self-normalizing technique can reduce the instability of IPW and DR
estimators (Kallus and Zhou, 2018):

1 Self-Normalized Estimators Under Positivity:

b�norm
IPW (t) =

b�IPW(t)

1
nh

nP
j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

=

nP
i=1

Yi

�
Ti�t

h

�
K
�

Ti�t
h

�
bpTjS(TijSi)

�2 � h
nP

j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

;

and

b�norm
DR (t) =

nP
i=1

�
Yi�b�(t;Si)�(Ti�t)�b�(t;Si)

�� Ti�t
h

�
K
�

Ti�t
h

�
bpTjS(TijSi)

�2 � h
nP

j=1

K
�

Tj�t

h

�
bpTjS(TjjSj)

+
1
n

nX
i=1

b�(t;Si):

Self-Normalized IPW and DR Estimators
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2 Self-Normalized Estimators Without Positivity:

b�norm
C;IPW(t) =

b�C;IPW(t)

1
nh

nP
j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

=

nP
i=1

Yi�
�

Ti�t
h

�
K
�

Ti�t
h

�
�bp�(Sijt)bp(Ti;Si)

�2 � h
nP

j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

;

and

b�norm
C;DR(t) =

nP
i=1

�
Yi�b�(t;Si)�(Ti�t)�b�(t;Si)

�� Ti�t
h

�
K
�

Ti�t
h

�
�bp�(Sijt)bp(Ti;Si)

�2 � h
nP

j=1

K
�

Tj�t

h

�
�bp�(Sjjt)bp(Tj;Sj)

+

Z b�(t; s) � bp�(sjt) ds:

Self-Normalized IPW and DR Estimators
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Assumption (Differentiability of the conditional mean outcome function)

For any (t; s) 2 T � S and �(t; s) = E (YjT = t;S = s), it holds that

1 �(t; s) is at least four times continuously differentiable with respect to t.

2 �(t; s) and all of its partial derivatives are uniformly bounded on T � S.

3 There exist absolute constants �;A0 > 0 such that Var(YjT = t;S = s) = �2 and
EjYj4 < A0 <1 uniformly in J .

Detailed Regularity Assumptions
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Let J be the support of the joint density p(t; s).

Assumption (Differentiability of the density functions)

For any (t; s) 2 J , it holds that

1 The joint density p(t; s) and the conditional density pTjS(tjs) are at least three times
continuously differentiable with respect to t.

2 p(t; s), pTjS(tjs), pSjT(sjt), as well as all of the partial derivatives of p(t; s) and pTjS(tjs) are
bounded and continuous up to the boundary @J .

3 The support T of the marginal density pT(t) is compact and pT(t) is uniformly bounded
away from 0 within T .

Detailed Regularity Assumptions
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Assumption (Boundary conditions)

1 There exists some constants r1; r2 2 (0; 1) such that for any (t; s) 2 J and all � 2 (0; r1],
there is a point (t0; s0) 2 J satisfying

B �(t0; s0); r2�
� � B ((t; s); �) \ J ;

where B((t; s); r) =
n
(t1; s1) 2 Rd+1 : jj(t1 � t; s1 � s)jj2 � r

o
with jj�jj2 being the

standard Euclidean norm.

2 For any (t; s) 2 @J , the boundary of J , it satisfies that @
@t p(t; s) =

@
@sj

p(t; s) = 0 and
@2

@s2
j
�(t; s) = 0 for all j = 1; :::; d.

3 For any � > 0, the Lebesgue measure of the set @J � � satisfies j@J � �j � A1 � � for some
absolute constant A1 > 0, where @J � � =

n
z 2 Rd+1 : infx2@J jjz� xjj2 � �

o
.

Detailed Regularity Assumptions
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Assumption (Regular kernel conditions)

A kernel function K : R! [0;1) is bounded and compactly supported on [�1; 1] withR
R K(t) dt = 1 and K(t) = K(�t). In addition, it holds that

1 �j :=
R
R ujK(u) du <1 and �j :=

R
R ujK2(u) du <1 for all j = 1; 2; :::.

2 K is a second-order kernel, i.e., �1 = 0 and �2 > 0.

3 K =

�
t0 7!

�
t0�t

h

�k1
K
�

t0�t
h

�
: t 2 T ; h > 0; k1 = 0; 1

�
is a bounded VC-type class of

measurable functions on R.

Assumption (Smoothness condition on S(t))

For any � 2 R and t 2 T , there exists an absolute constant A0 > 0 such that either of the
following holds true:
(i) “S(t)	 (A0j�j) � S(t + �)” for the support shrinking approach;
(ii) “LA0j�j(t) � S(t + �)” for the level set approach.

Detailed Regularity Assumptions
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� The support J of (T;S) may not cover T � S without positivity.

� The localized derivative estimator b�C(t) =
R b�(t; s) dbPℏ(sjt) only requires b�(t; s) to

be consistent in J .

Lemma (Lemma 3 in Zhang et al. 2024)

Under some regularity conditions, as h; b; maxfh;bg4

h ! 0 and j log(hbd)j
nh3bd !1,

sup
(t;s)2J

���� b�(t; s)� @

@t
�(t; s)

���� = O

 
hq + b2 +

maxfh; bg4

h

!
+ OP

0@s j log(hbd)j
nh3bd

1A :

Uniform Consistency of Local Polynomial Regression
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Combining with the consistency of bPℏ(sjt) via the technique in Fan et al. (1998), we
have the following results.

Theorem (Theorem 4 in Zhang et al. 2024)

Under some regularity conditions, when q = 2 and h; b; ℏ; maxfh;bg4

h ! 0 and
nmaxfh;ℏgbd

log n ; nℏ
log n !1,

sup
t2T

���b�C;RA(t)� �C(t)
��� = O

 
h2 + b2 +

maxfb; hg4

h

!
| {z }

Bias term

+OP

0@s log n
nh3 + ℏ2 +

s
log n
nℏ

1A
| {z }

Stochastic variation

;

sup
t2T

jbmC;RA(t)�m(t)j = O

 
h2 + b2 +

maxfb; hg4

h

!
+ OP

0@ 1p
n
+

s
log n
nh3 + ℏ2 +

s
log n
nℏ

1A :

Uniform Consistencies of Proposed Estimators
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sup
t2T

jbmC;RA(t)�m(t)j = O

 
h2 + b2 +

maxfb; hg4

h

!
+ OP

0@ 1p
n
+

s
log n
nh3 + ℏ2 +

s
log n
nℏ

1A :

� Blue term: the estimation bias of local polynomial estimator b�(t; s) = b�2(t; s).

� Orange term: additional bias of b�2(t; s) at the boundary @J .

� Teal term: asymptotic rate from �Yn = 1
n
Pn

i=1 Yi.

� Red term: stochastic variation of b�2(t; s).

� Cyan term: asymptotic rate from the Nadaraya-Watson conditional CDF estimatorbPℏ(sjt).

Uniform Rate of Convergence For the Integral Estimator
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Lemma (Lemma 5 in Zhang et al. 2024)

Under the same regularity conditions, if h � n�
1

 and ℏ � n�

1
$ for some 
 � $ > 0 such

that nh5

log n ! c1 and nℏ5

log n ! c2 for some c1; c2 � 0 and nmaxfh;ℏgbd

log n ; nℏ
log n ;

h3 log n
ℏ ; nh3ℏ4

log n !1
as n !1, then for any t 2 T ,
p

nh3
hb�C;RA(t)� �(t)

i
= Gn �'t + oP(1) and

p
nh3 [bmC;RA(t)�m(t)] = Gn't + oP(1);

where
�'t(Y;T;S) =

CKT [Y� �(T;S)]p
h � pT(t)

�
T � t

h

�
KT

�
T � t

h

�
and 't (Y;T;S) = ET1

hR t
T1

�'et(Y;T;S) deti with Gn =
p

n (Pn � P), where CKT > 0 is a
constant that only depends on KT.

▶ Note: �'t and 't are the IPW components of the approximated efficient influence
functions.

Asymptotic Linearity of Proposed Estimators
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Theorem (Theorems 6 and 7 in Zhang et al. 2024)

Under the same regularity conditions, if h � n�
1

 and b ≲ ℏ � n�

1
$ for some 
 � $ > 0

such that nhd+5

log n ! c1 and nℏ5

log n ! c2 for some c1; c2 � 0 and
ℏ

h3 log n ; ℏn
1
3 log n;

p
nℏ

log n ;
nmaxfh;ℏgbd

log n !1 as n !1,

1����pnh3 sup
t2T

jbmC;RA(t)�m(t)j � sup
t2T

jGn'tj
���� = OP

�p
nh3 maxfh;}g4 +

q
h3 log n

}
+ log np

n}
+
q

log n
nbd}

�
.

2 there exists a mean-zero Gaussian process B such that

sup
u�0

�����P
�p

nh3 sup
t2T

jbmC;RA(t)�m(t)j � u
�
� P

 
sup
f2F

jB(f )j � u

!����� = O

0@ log5 n
nh3

! 1
8

+

 
log2 n
nbd}

! 3
8
1A :

3

sup
u�0

�����P
�p

nh3 sup
t2T

��bm�
C;RA(t)� bmC;RA(t)

�� � u
���Un

�
� P

 
sup
f2F

jB(f )j � u

!����� = OP

��
log5 n

nh3

� 1
8
+
�
log2 n
nbd}

� 3
8
�

,

where F = f(v; x; z) 7! 't(v; x; z) : t 2 T g.

Nonparametric Bootstrap Consistency
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1 F is not Donsker because 't is not uniformly bounded as h ! 0.

� However, eF =
n
(v; x; z) 7!

p
h3 � 't(v; x; z) : t 2 T

o
is of VC-type.

� Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the
difference between supf2F jGn(f )j and supf2F jB(f )j.

2 As long as Var(YjT = t;S = s) � �2 > 0, Var ['t(Y;T;S)] is a positive finite number.

� The asymptotic linearity (or V-statistic) is non-degenerate.

� Pointwise bootstrap confidence intervals are asymptotically valid.

3 For the validity of uniform bootstrap confidence band, one can choose the

bandwidths h � ℏ = O
�

n�
1
5

�
and

�
log n

n

� 4
5d ≲ b ≲ n�

1
5 .

� These orders align with the outputs from the usual bandwidth selection methods
(Bashtannyk and Hyndman, 2001; Li and Racine, 2004).

� No explicit undersmoothing is required!!

Remarks on Our Nonparametric Bootstrap Consistency
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Additional Results for PM2:5 on CMRs
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� Use the Epanechnikov kernel for KT and KS (with the product kernel technique)
and Gaussian kernel for �KT.

� Select the bandwidth parameters h; b > 0 by modifying the rule-of-thumb method
in Yang and Tschernig (1999).

� Set the bandwidth parameter ℏ > 0 to the normal reference rule in Chacón et al.
(2011); Chen et al. (2016).

� Set the bootstrap resampling time B = 1000 and the nominal level for confidence
intervals or bands to 95%.

� Compare our proposed estimators with the regression adjustment estimators
under the same choices of bandwidth parameters:

bmRA(t) =
1
n

nX
i=1

b�(t;Si) and b�RA(t) =
1
n

nX
i=1

b�(t;Si):

Simulation Setup for Estimating m(t) and �(t) Without Positivity
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Generate i.i.d. observations f(Yi;Ti;Si)g2000
i=1 from

Y = T2 + T + 1 + 10S + �; T = sin(�S) + E; and S � Uniform[�1; 1]:

� E � Uniform[�0:3; 0:3] is an independent treatment variation,
� � � N (0; 1) is an exogenous normal noise.
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Single Confounder Model Without Positivity
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Generate i.i.d. observations f(Yi;Ti;Si)g2000
i=1 from

Y = T + 6S1 + 6S2 + �; T = 2S1 + S2 + E; and (S1;S2) � Uniform[�1; 1]2;

� E � Uniform[�0:5; 0:5] and � � N (0; 1).
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Generate i.i.d. observations f(Yi;Ti;Si)g2000
i=1 from

Y = T2 + T + 10Z + �; T = cos
�
�Z3

�
+

Z
4
+ E; and Z = 4S1 + S2;

� (S1;S2) � Uniform[�1; 1]2, E � Uniform[�0:1; 0:1], and � � N (0; 1).
� Those doubly robust methods based on pseudo-outcomes (Kennedy et al., 2017;

Takatsu and Westling, 2024) do not work in this example.
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We generate i.i.d. observations f(Yi;Ti;Si)gn
i=1 from the following data-generating

model (Colangelo and Lee, 2020):

Y = 1:2 T + T2 + TS1 + 1:2 ���TS + �
q

0:5 + FN (0;1)(S1); � � N (0; 1);

T = FN (0;1)

�
3���TS

�
� 0:5 + 0:75E; S = (S1; :::;Sd)

T � Nd (0;�) ; E � N (0; 1);

where

� FN (0;1) is the CDF of N (0; 1) and d = 20.

� ��� = (�1; :::; �d)
T 2 Rd has its entry �j =

1
j2 for j = 1; :::; d and �ii = 1, �ij = 0:5 when

ji� jj = 1, and �ij = 0 when ji� jj > 1 for i; j = 1; :::; d.

� The dose-response curve is given by m(t) = 1:2t + t2, and our parameter of interest
is the derivative effect curve �(t) = 1:2 + 2t.

Simulation Setup for Estimating �(t) Under Positivity
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Comparisons between our proposed estimators and the finite-difference approaches
by Colangelo and Lee (2020) (“CL20”) under positivity and with 5-fold cross-fitting

across various sample sizes.

Simulations for Estimating �(t) Under Positivity
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Simulations for Estimating �(t) Under Positivity
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We compare our proposed DR estimator b�DR(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps
program (Schochet et al., 2001).
� Y is the proportion of weeks employed in 2nd year after enrollment.
� T is the total hours of academic and vocational training received.
� S comprises 49 socioeconomic characteristics, and n = 4024.
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Y = T3 + T2 + 10S + �; T = sin(�S) + E; S � Unif[�1; 1]; E � Unif[�0:3; 0:3]:
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▶ Note: �(t; s) = @
@t�(t; s) is estimated via automatic differentiation of a well-trained

neural network (inspired by Luedtke 2024).

Simulations for b�C;RA(t); b�C;IPW(t); b�C;DR(t) Without Positivity
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